Fate of the molar dental lamina in the monophyodont mouse

. 2015 ; 10 (5) : e0127543. [epub] 20150526

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26010446

The successional dental lamina (SDL) plays an essential role in the development of replacement teeth in diphyodont and polyphyodont animals. A morphologically similar structure, the rudimental successional dental lamina (RSDL), has been described in monophyodont (only one tooth generation) lizards on the lingual side of the developing functional tooth. This rudimentary lamina regresses, which has been proposed to play a role in preventing the formation of future generations of teeth. A similar rudimentary lingual structure has been reported associated with the first molar in the monophyodont mouse, and we show that this structure is common to all murine molars. Intriguingly, a lingual lamina is also observed on the non-replacing molars of other diphyodont mammals (pig and hedgehog), initially appearing very similar to the successional dental lamina on the replacing teeth. We have analyzed the morphological as well as ultrastructural changes that occur during the development and loss of this molar lamina in the mouse, from its initiation at late embryonic stages to its disappearance at postnatal stages. We show that loss appears to be driven by a reduction in cell proliferation, down-regulation of the progenitor marker Sox2, with only a small number of cells undergoing programmed cell death. The lingual lamina was associated with the dental stalk, a short epithelial connection between the tooth germ and the oral epithelium. The dental stalk remained in contact with the oral epithelium throughout tooth development up to eruption when connective tissue and numerous capillaries progressively invaded the dental stalk. The buccal side of the dental stalk underwent keratinisation and became part of the gingival epithelium, while most of the lingual cells underwent programmed cell death and the tissue directly above the erupting tooth was shed into the oral cavity.

Zobrazit více v PubMed

Zahradnicek O, Horacek I, Tucker AS. Tooth development in a model reptile: functional and null generation teeth in the gecko Paroedura picta. J Anat. 2012;221(3):195–208. 10.1111/j.1469-7580.2012.01531.x PubMed DOI PMC

Sire JY, Davit-Beal T, Delgado S, Van Der Heyden C, Huysseune A. First-generation teeth in nonmammalian lineages: evidence for a conserved ancestral character? Microsc Res Tech. 2002;59(5):408–34. . PubMed

Rothova M, Peterkova R, Tucker AS. Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Dev Biol. 2012;366(2):244–54. 10.1016/j.ydbio.2012.03.018 PubMed DOI

Setkova J, Lesot H, Matalova E, Witter K, Matulova P, Misek I. Proliferation and apoptosis in early molar morphogenesis—voles as models in odontogenesis. Int J Dev Biol. 2006;50(5):481–9. . PubMed

Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Lesot H. Expression patterns of BMPRs in the developing mouse molar. Cell Tissue Res. 2006;324(1):33–40. . PubMed

Smith MM, Fraser GJ, Mitsiadis TA. Dental lamina as source of odontogenic stem cells: evolutionary origins and developmental control of tooth generation in gnathostomes. Journal of experimental zoology. 2009;312B(4):260–80. 10.1002/jez.b.21272 PubMed DOI

Buchtova M, Handrigan GR, Tucker AS, Lozanoff S, Town L, Fu K, et al. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling. Dev Biol. 2008;319(1):132–45. 10.1016/j.ydbio.2008.03.004 PubMed DOI

Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development. 2012;139(19):3487–97. 10.1242/dev.085084 PubMed DOI

Stembirek J, Buchtova M, Kral T, Matalova E, Lozanoff S, Misek I. Early morphogenesis of heterodont dentition in minipigs. Eur J Oral Sci. 2010;118(6):547–58. 10.1111/j.1600-0722.2010.00772.x PubMed DOI

Moskow BS, Bloom A. Embryogenesis of the gingival cyst. Journal of clinical periodontology. 1983;10(2):119–30. . PubMed

Jarvinen E, Tummers M, Thesleff I. The role of the dental lamina in mammalian tooth replacement. Journal of experimental zoology. 2009;312B(4):281–91. 10.1002/jez.b.21275 PubMed DOI

Buchtova M, Stembirek J, Glocova K, Matalova E, Tucker AS. Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res. 2012;91(5):491–8. 10.1177/0022034512442896 PubMed DOI

Buchtova M, Zahradnicek O, Balkova S, Tucker AS. Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus). Arch Oral Biol. 2013;58(2):118–33. 10.1016/j.archoralbio.2012.10.019 PubMed DOI

Cooper JS. The dentition of agamid lizards with special reference to tooth replacement. Journal of Zoology. 1970;162:85–98.

Peterkova R, Hovorakova M, Peterka M, Lesot H. Three-dimensional analysis of the early development of the dentition. Australian dental journal. 2014;59 Suppl 1:55–80. 10.1111/adj.12130 PubMed DOI PMC

Juuri E, Jussila M, Seidel K, Holmes S, Wu P, Richman J, et al. Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development. 2013;140(7):1424–32. 10.1242/dev.089599 PubMed DOI PMC

Avery JK. Oral development and histology Stuttgart: Georg Thieme Verlag; 1994.

Khaejornbut J, Wilson DJ, Owens PD. The development and fate of the dental lamina of the mandibular first molar tooth in the rat. J Anat. 1991;179:85–96. . PubMed PMC

Richman JM, Handrigan GR. Reptilian tooth development. Genesis. 2011;49(4):247–60. 10.1002/dvg.20721 PubMed DOI

Boiani M, Scholer HR. Regulatory networks in embryo-derived pluripotent stem cells. Nature reviews. 2005;6(11):872–84. . PubMed

Juuri E, Saito K, Ahtiainen L, Seidel K, Tummers M, Hochedlinger K, et al. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell. 2012;23(2):317–28. 10.1016/j.devcel.2012.05.012 PubMed DOI PMC

Gaete M, Tucker AS. Organized emergence of multiple-generations of teeth in snakes is dysregulated by activation of Wnt/beta-catenin signalling. PLoS ONE. 2013;8(9):e74484 10.1371/journal.pone.0074484 PubMed DOI PMC

Juuri E, Isaksson S, Jussila M, Heikinheimo K, Thesleff I. Expression of the stem cell marker, SOX2, in ameloblastoma and dental epithelium. Eur J Oral Sci. 2013;121(6):509–16. 10.1111/eos.12095 PubMed DOI

Numakura C, Kitanaka S, Kato M, Ishikawa S, Hamamoto Y, Katsushima Y, et al. Supernumerary impacted teeth in a patient with SOX2 anophthalmia syndrome. American journal of medical genetics. 2010;152A(9):2355–9. 10.1002/ajmg.a.33556 PubMed DOI

Ungar P. Mammal Teeth: Origin, Evolution and Diversity. Baltimore: MD: Johns Hopkins University Press; 2010.

Handrigan GR, Richman JM. A network of Wnt, hedgehog and BMP signaling pathways regulates tooth replacement in snakes. Dev Biol. 2010;348(1):130–41. 10.1016/j.ydbio.2010.09.003 PubMed DOI

Huysseune A, Thesleff I. Continuous tooth replacement: the possible involvement of epithelial stem cells. Bioessays. 2004;26(6):665–71. . PubMed

Wu P, Wu X, Jiang TX, Elsey RM, Temple BL, Divers SJ, et al. Specialized stem cell niche enables repetitive renewal of alligator teeth. Proc Natl Acad Sci U S A. 2013;110(22):E2009–18. 10.1073/pnas.1213202110 PubMed DOI PMC

Handrigan GR, Leung KJ, Richman JM. Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement. Development. 2010;137(21):3545–9. 10.1242/dev.052415 PubMed DOI

Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell stem cell. 2007;1(5):515–28. 10.1016/j.stem.2007.09.002 PubMed DOI PMC

Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell stem cell. 2011;9(4):317–29. 10.1016/j.stem.2011.09.001 PubMed DOI PMC

Fan YX, Gu CH, Zhang YL, Zhong BS, Wang LZ, Zhou ZR, et al. Oct4 and Sox2 overexpression improves the proliferation and differentiation of bone mesenchymal stem cells in Xiaomeishan porcine. Genet Mol Res. 2013;12(4):6067–79. 10.4238/2013.December.2.5 PubMed DOI

Matalova E, Tucker AS, Sharpe PT. Death in the life of a tooth. J Dent Res. 2004;83(1):11–6. . PubMed

Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4. Development. 1996;122(1):121–9. . PubMed

Jussila M, Crespo Yanez X, Thesleff I. Initiation of teeth from the dental lamina in the ferret. Differentiation. 2014;87(1–2):32–43. 10.1016/j.diff.2014.08.001 PubMed DOI

Green KJ, Simpson CL. Desmosomes: new perspectives on a classic. The Journal of investigative dermatology. 2007;127(11):2499–515. . PubMed

Alibardi L, Tsuchiya M, Watanabe S, Nocker B. Ultrastructural localization of desmoglein and plakophilin in the human hair suggests that the cell membrane complex is a long desmosomal remnant. Acta histochemica. 2013;115(8):879–86. 10.1016/j.acthis.2013.04.008 PubMed DOI

Steinert PM, Marekov LN. Initiation of assembly of the cell envelope barrier structure of stratified squamous epithelia. Molecular biology of the cell. 1999;10(12):4247–61. . PubMed PMC

Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and histopathology. 2009;24(7):909–69. . PubMed

Ruch JV, Lesot H, Karcher-Djuricic V, Meyer JM, Mark M. Epithelial-mesenchymal interactions in tooth germs: mechanisms of differentiation. J Biol Buccale. 1983;11(3):173–93. . PubMed

Ruch JV, Lesot H, Begue-Kirn C. Odontoblast differentiation. Int J Dev Biol. 1995;39(1):51–68. . PubMed

Karcher-Djuricic V, Osman M, Meyer JM, Staubli A, Ruch JV. Basement membrane reconstitution and cytodifferentiation of odontoblasts in isochronal and heterochronal reassociations of enamel organs and pulps. J Biol Buccale. 1978;6(4):257–65. . PubMed

Osman M, Ruch JV. Behavior of odontoblasts and basal lamina of trypsin or EDTA-isolated mouse dental papillae in short-term culture. J Dent Res. 1981;60(6):1015–27. . PubMed

Meyer JM, Ruch JV, Kubler MD, Kupferle C, Lesot H. Cultured incisors display major modifications in basal lamina deposition without further effect on odontoblast differentiation. Cell Tissue Res. 1995;279(1):135–47. . PubMed

Lesot H, Peterkova R, Schmitt R, Meyer JM, Viriot L, Vonesch JL, et al. Initial features of the inner dental epithelium histo-morphogenesis in the first lower molar in mouse. Int J Dev Biol. 1999;43(3):245–54. . PubMed

Lesot H, Kieffer-Combeau S, Fausser JL, Meyer JM, Perrin-Schmitt F, Peterkova R, et al. Cell-cell and cell-matrix interactions during initial enamel organ histomorphogenesis in the mouse. Connect Tissue Res. 2002;43(2–3):191–200. . PubMed

Buchtova M, Boughner JC, Fu K, Diewert VM, Richman JM. Embryonic development of Python sebae—II: Craniofacial microscopic anatomy, cell proliferation and apoptosis. Zoology (Jena, Germany). 2007;110(3):231–51. . PubMed

Martinez C, Smith PC, Rodriguez JP, Palma V. Sonic hedgehog stimulates proliferation of human periodontal ligament stem cells. J Dent Res. 2011;90(4):483–8. 10.1177/0022034510391797 PubMed DOI

Heo JS, Lee MY, Han HJ. Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2+/protein kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem cells (Dayton, Ohio). 2007;25(12):3069–80. . PubMed

Dassule HR, Lewis P, Bei M, Maas R, McMahon AP. Sonic hedgehog regulates growth and morphogenesis of the tooth. Development. 2000;127(22):4775–85. . PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...