Region-specific gene expression profiling of early mouse mandible uncovered SATB2 as a key molecule for teeth patterning
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-06-00189/2020
Ministerstvo Zdravotnictví Ceské Republiky
LM2018129
Czech-BioImaging
22-02794S
Grantová Agentura České Republiky
19-01205S
Grantová Agentura České Republiky
304/08/P289
Grantová Agentura České Republiky
NW24-10-00204
Ministerstvo Zdravotnictví České Republiky
PubMed
39107332
PubMed Central
PMC11303781
DOI
10.1038/s41598-024-68016-3
PII: 10.1038/s41598-024-68016-3
Knihovny.cz E-zdroje
- Klíčová slova
- Incisor, Lower jaw, Microarray, Molar, Mouse, Satb2,
- MeSH
- mandibula * metabolismus embryologie MeSH
- myši MeSH
- odontogeneze * genetika MeSH
- řezáky metabolismus embryologie růst a vývoj MeSH
- rozvržení tělního plánu genetika MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese * MeSH
- transkripční faktory * genetika metabolismus MeSH
- vazebné proteiny DNA v oblastech připojení k matrix * genetika metabolismus MeSH
- vývojová regulace genové exprese * MeSH
- zuby metabolismus embryologie růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- SATB2 protein, mouse MeSH Prohlížeč
- transkripční faktory * MeSH
- vazebné proteiny DNA v oblastech připojení k matrix * MeSH
Mammalian dentition exhibits distinct heterodonty, with more simple teeth located in the anterior area of the jaw and more complex teeth situated posteriorly. While some region-specific differences in signalling have been described previously, here we performed a comprehensive analysis of gene expression at the early stages of odontogenesis to obtain complete knowledge of the signalling pathways involved in early jaw patterning. Gene expression was analysed separately on anterior and posterior areas of the lower jaw at two early stages (E11.5 and E12.5) of odontogenesis. Gene expression profiling revealed distinct region-specific expression patterns in mouse mandibles, including several known BMP and FGF signalling members and we also identified several new molecules exhibiting significant differences in expression along the anterior-posterior axis, which potentially can play the role during incisor and molar specification. Next, we followed one of the anterior molecules, SATB2, which was expressed not only in the anterior mesenchyme where incisor germs are initiated, however, we uncovered a distinct SATB2-positive region in the mesenchyme closely surrounding molars. Satb2-deficient animals demonstrated defective incisor development confirming a crucial role of SATB2 in formation of anterior teeth. On the other hand, ectopic tooth germs were observed in the molar area indicating differential effect of Satb2-deficiency in individual jaw regions. In conclusion, our data provide a rich source of fundamental information, which can be used to determine molecular regulation driving early embryonic jaw patterning and serve for a deeper understanding of molecular signalling directed towards incisor and molar development.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Department of Stomatology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Stomatology St Anne's University Hospital Brno Czech Republic
Laboratory of Computed Tomography CEITEC BUT Brno Czech Republic
Zobrazit více v PubMed
Rossant, J. & Tam, P. Mouse development: patterning, morphogenesis, and organogenesis. 1st edn. (Academic Press, 2002).
Thesleff, I. & Tummers, M. Tooth organogenesis and regeneration. Stembook (2009) 10.3824/STEMBOOK.1.37.1. PubMed
Stockton, D. W., Das, P., Goldenberg, M., D’Souza, R. N. & Patel, P. I. Mutation of PAX9 is associated with oligodontia. Nat. Genet.24, 18–19 (2000). 10.1038/71634 PubMed DOI
Vastardis, H., Karimbux, N., Guthua, S. W., Seidman, J. G. & Seidman, C. E. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat. Genet.13, 417–421 (1996). 10.1038/ng0896-417 PubMed DOI
Mostowska, A., Biedziak, B. & Jagodzinski, P. P. Novel MSX1 mutation in a family with autosomal-dominant hypodontia of second premolars and third molars. Arch. Oral Biol.57, 790–795 (2012). 10.1016/j.archoralbio.2012.01.003 PubMed DOI
Thomas, B. L., Liu, J. K., Rubenstein, J. L. R. & Sharpe, P. T. Independent regulation of Dlx2 expression in the epithelium and mesenchyme of the first branchial arch. Development127, 217–224 (2000). 10.1242/dev.127.2.217 PubMed DOI
Thomas, B. L. et al. Role of Dlx-1 and Dlx-2 genes in patterning of the murine dentition. Development124, 4811–4818 (1997). 10.1242/dev.124.23.4811 PubMed DOI
Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat. Genet.6, 348–356 (1994). 10.1038/ng0494-348 PubMed DOI
Du, W., Du, W. & Yu, H. The role of fibroblast growth factors in tooth development and incisor renewal. Stem Cells Int.2018, 7549160 (2018). 10.1155/2018/7549160 PubMed DOI PMC
Miletich, I., Buchner, G. & Sharpe, P. T. Barx1 and evolutionary changes in feeding. J. Anat.207, 619 (2005). 10.1111/j.1469-7580.2005.00486.x PubMed DOI PMC
Elmubarak, N. A. R. Genetic risk of talon cusp: Talon cusp in five siblings. Case Rep. Dent.10.1155/2019/3080769 (2019). 10.1155/2019/3080769 PubMed DOI PMC
Segura-Egea, J. J., Jiménez-Rubio, A., Ríos-Santos, J. V. & Velasco-Ortega, E. Dens evaginatus of anterior teeth (talon cusp): Report of five cases. Quintessence Int.34, 272–277 (2003). PubMed
Gardner, D. G. & Girgis, S. S. Talon cusps: A dental anomaly in the Rubinstein-Taybi syndrome. Oral Surg Oral Med. Oral Pathol.47, 519–521 (1979). 10.1016/0030-4220(79)90274-3 PubMed DOI
Chen, R. J. & Chen, H. S. Talon cusp in primary dentition. Oral Surg Oral Med. Oral Pathol.62, 67–72 (1986). 10.1016/0030-4220(86)90072-1 PubMed DOI
Hattab, F. N., Yassin, O. M. & Sasa, I. S. Oral manifestations of Ellis-van Creveld syndrome: Report of two siblings with unusual dental anomalies. J. Clin. Pediatr. Dent.22, 159–165 (1998). PubMed
Kjær, I. Dental approach to craniofacial syndromes: How can developmental fields show us a new way to understand pathogenesis?. Int. J. Dent.10.1155/2012/145749 (2012). 10.1155/2012/145749 PubMed DOI PMC
Buchtová, M. et al. Whole genome microarray analysis of chicken embryo facial prominences. Dev. Dyn.239, 574–591 (2010). 10.1002/dvdy.22135 PubMed DOI
Sehic, A., Risnes, S., Khan, Q. E. S., Khuu, C. & Osmundsen, H. Gene expression and dental enamel structure in developing mouse incisor. Eur. J. Oral Sci.118, 118–130 (2010). 10.1111/j.1600-0722.2010.00722.x PubMed DOI
Tarca, A. L., Romero, R. & Draghici, S. Analysis of microarray experiments of gene expression profiling. Am. J. Obstet. Gynecol.195, 373 (2006). 10.1016/j.ajog.2006.07.001 PubMed DOI PMC
van IJzendoorn, D. G. P. et al. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Biol.15, e1006826 (2019). 10.1371/journal.pcbi.1006826 PubMed DOI PMC
Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science364, eaas9536–eaas9536 (2019). 10.1126/science.aas9536 PubMed DOI
Nimmagadda, S. et al. Identification and functional analysis of novel facial patterning genes in the duplicated beak chicken embryo. Dev. Biol.407, 275–288 (2015). 10.1016/j.ydbio.2015.09.007 PubMed DOI
Dobreva, G. et al. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell125, 971–986 (2006). 10.1016/j.cell.2006.05.012 PubMed DOI
Tucker, A. S., Matthews, K. L. & Sharpe, P. T. Transformation of tooth type induced by inhibition of BMP signaling. Science1979(282), 1136–1138 (1998).10.1126/science.282.5391.1136 PubMed DOI
Mitsiadis, T. A. et al. Expression of the transcription factors Otlx2, Barx1 and Sox9 during mouse odontogenesis. Eur. J. Oral Sci.106(Suppl 1), 112–116 (1998). 10.1111/j.1600-0722.1998.tb02161.x PubMed DOI
Tissier-Seta, J. P. et al. Barx1, a new mouse homeodomain transcription factor expressed in cranio-facial ectomesenchyme and the stomach. Mech. Dev.51, 3–15 (1995). 10.1016/0925-4773(94)00343-L PubMed DOI
Kim, B. M. et al. Independent functions and mechanisms for homeobox gene Barx1 in patterning mouse stomach and spleen. Development134, 3603–3613 (2007). 10.1242/dev.009308 PubMed DOI
Krivicka-Uzkurele, B., Pilmane, M. & Akota, I. Barx1, growth factors and apoptosis in facial tissue of children with clefts (2008). PubMed
Cobourne, M. T. & Sharpe, P. T. Tooth and jaw: Molecular mechanisms of patterning in the first branchial arch. Arch. Oral Biol.48, 1–14 (2003). 10.1016/S0003-9969(02)00208-X PubMed DOI
Suryadeva, S. & Begum, M. Role of homeobox genes in tooth morphogenesis: A review. J. Clin. Diagn. Res.9, ZE09 (2015). PubMed PMC
Gray, P. A. et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science306, 2255–2257 (2004). 10.1126/science.1104935 PubMed DOI
Tripodi, M., Filosa, A., Armentano, M. & Studer, M. The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain. Development131, 6119–6129 (2004). 10.1242/dev.01530 PubMed DOI
Bergeron, K. F. et al. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis. Model Mech.9, 1283–1293 (2016). 10.1242/dmm.026773 PubMed DOI PMC
Kaiwar, C. et al. Novel NR2F1 variants likely disrupt DNA binding: molecular modeling in two cases, review of published cases, genotype-phenotype correlation, and phenotypic expansion of the Bosch-Boonstra-Schaaf optic atrophy syndrome. Cold Spring Harb. Mol. Case Stud.3, a002162 (2017). 10.1101/mcs.a002162 PubMed DOI PMC
Barske, L. et al. Essential role of Nr2f nuclear receptors in patterning the vertebrate upper jaw. Dev. Cell44, 337-347.e5 (2018). 10.1016/j.devcel.2017.12.022 PubMed DOI PMC
Reymond, A. et al. Human chromosome 21 gene expression atlas in the mouse. Nature420, 582–586 (2002). 10.1038/nature01178 PubMed DOI
Shamblott, M. J., Bugg, E. M., Lawler, A. M. & Gearhart, J. D. Craniofacial abnormalities resulting from targeted disruption of the murine Sim2 gene. Dev. Dyn.224, 373–380 (2002). 10.1002/dvdy.10116 PubMed DOI
Ma, Q., Anderson, D. J. & Fritzsch, B. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J. Assoc. Res. Otolaryngol.1, 129–143 (2000). 10.1007/s101620010017 PubMed DOI PMC
Sudiwala, S. & Knox, S. M. The emerging role of cranial nerves in shaping craniofacial development. Genesis10.1002/dvg.23282 (2019). 10.1002/dvg.23282 PubMed DOI PMC
Ten Berge, D. et al. Mouse Alx3: An aristaless-like homeobox gene expressed during embryogenesis in ectomesenchyme and lateral plate mesoderm. Dev. Biol.199, 11–25 (1998). 10.1006/dbio.1998.8921 PubMed DOI
Sharpe, P. T. Homeobox genes and orofacial development. Connect. Tissue Res.32, 17–25 (1995). 10.3109/03008209509013701 PubMed DOI
Twigg, S. R. F. et al. Frontorhiny, a distinctive presentation of frontonasal dysplasia caused by recessive mutations in the ALX3 homeobox gene. Am. J. Hum. Genet.84, 698 (2009). 10.1016/j.ajhg.2009.04.009 PubMed DOI PMC
Beverdam, A., Brouwer, A., Reijnen, M., Korving, J. & Meijlink, F. Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development128, 3975–3986 (2001). 10.1242/dev.128.20.3975 PubMed DOI
Jowett, A. K., Vainio, S., Ferguson, M. W. J., Sharpe, P. T. & Thesleff, I. Epithelial-mesenchymal interactions are required for msx 1 and msx 2 gene expression in the developing murine molar tooth. Development117, 461–470 (1993). 10.1242/dev.117.2.461 PubMed DOI
Liang, J. et al. MSX1 mutations and associated disease phenotypes: genotype-phenotype relations. Eur. J. Hum. Genet.24, 1663–1670 (2016). 10.1038/ejhg.2016.78 PubMed DOI PMC
Milet, C. & Monsoro-Burq, A. H. Neural crest induction at the neural plate border in vertebrates. Dev. Biol.366, 22–33 (2012). 10.1016/j.ydbio.2012.01.013 PubMed DOI
Nakatomi, M. et al. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev. Biol.340, 438–449 (2010). 10.1016/j.ydbio.2010.01.031 PubMed DOI
Molla, M. et al. Enamel protein regulation and dental and periodontal physiopathology in MSX2 mutant mice. Am. J. Pathol.177, 2516–2526 (2010). 10.2353/ajpath.2010.091224 PubMed DOI PMC
Alappat, S., Zhang, Z. Y. & Chen, Y. P. Msx homeobox gene family and craniofacial development. Cell Res.13, 429–442 (2003). 10.1038/sj.cr.7290185 PubMed DOI
Xu, Y. et al. Transcription coactivator Cited1 acts as an inducer of trophoblast-like state from mouse embryonic stem cells through the activation of BMP signaling. Cell Death Dis.9, 1–17 (2018). 10.1038/s41419-018-0991-1 PubMed DOI PMC
Tamura, M. & Nemoto, E. Role of the Wnt signaling molecules in the tooth. Jpn. Dent. Sci. Rev.52, 75 (2016). 10.1016/j.jdsr.2016.04.001 PubMed DOI PMC
Niida, A. et al. DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway. Oncogene23, 8520–8526 (2004). 10.1038/sj.onc.1207892 PubMed DOI
Brugmann, S. A. et al. Wnt signaling mediates regional specification in the vertebrate face. Development134, 3283–3295 (2007). 10.1242/dev.005132 PubMed DOI
Zhang, Y. et al. Reciprocal requirements for EDA/EDAR/NF-kappaB and Wnt/beta-catenin signaling pathways in hair follicle induction. Dev. Cell17, 49–61 (2009). 10.1016/j.devcel.2009.05.011 PubMed DOI PMC
Järvinen, E., Shimomura-Kuroki, J., Balic, A., Jussila, M. & Thesleff, I. Mesenchymal Wnt/β-catenin signaling limits tooth number. Development10.1242/dev.158048 (2018). 10.1242/dev.158048 PubMed DOI
Lee, M. J., Kim, E. J., Li, L. & Jung, H. S. Roles of Wnt inhibitory factor 1 during tooth morphogenesis. Cell Tissue Res.362, 61–68 (2015). 10.1007/s00441-015-2170-3 PubMed DOI
Sasaki, T. et al. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev. Biol.278, 130–143 (2005). 10.1016/j.ydbio.2004.10.021 PubMed DOI
Yamada, W. et al. Craniofacial malformation in R-spondin2 knockout mice. Biochem. Biophys. Res. Commun.381, 453–458 (2009). 10.1016/j.bbrc.2009.02.066 PubMed DOI
Dasgupta, K. et al. R-spondin 3 regulates mammalian dental and craniofacial development. J. Dev. Biol.9, 31 (2021). 10.3390/jdb9030031 PubMed DOI PMC
Palmer, A. J., Savery, D., Massa, V., Copp, A. J. & Greene, N. D. E. Genetic interaction of Pax3 mutation and canonical Wnt signaling modulates neural tube defects and neural crest abnormalities. Genesis59, e23445 (2021). 10.1002/dvg.23445 PubMed DOI
Bandyopadhyay, S., Prasad, S. & Singhania, P. K. Partial anodontia in a case of Waardenburg’s syndrome. J. Laryngol. Otol.113, 672–674 (1999). 10.1017/S0022215100144810 PubMed DOI
Sólia-Nasser, L. et al. Waardenburg syndrome type I: Dental phenotypes and genetic analysis of an extended family. Med. Oral. Patol. Oral Cir. Bucal.21, e321 (2016). 10.4317/medoral.20789 PubMed DOI PMC
Krüger, J. M. et al. Differential roles of postsynaptic density-93 isoforms in regulating synaptic transmission. J. Neurosci.33, 15504–15517 (2013). 10.1523/JNEUROSCI.0019-12.2013 PubMed DOI PMC
Diez-Roux, G. et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol.9, e1000582 (2011). 10.1371/journal.pbio.1000582 PubMed DOI PMC
Bell, R. A. V. et al. Chromatin reorganization during myoblast differentiation involves the caspase-dependent removal of SATB2. Cells11, 966 (2022). 10.3390/cells11060966 PubMed DOI PMC
Gyorgy, A. B., Szemes, M., De Juan Romero, C., Tarabykin, V. & Agoston, D. V. SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. Eur. J. Neurosci.27, 865–873 (2008). 10.1111/j.1460-9568.2008.06061.x PubMed DOI
Dobreva, G., Dambacher, J. & Grosschedl, R. SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin μ gene expression. Genes Dev.17, 3048–3061 (2003). 10.1101/gad.1153003 PubMed DOI PMC
Zhao, X. et al. The role of SATB2 in skeletogenesis and human disease. Cytokine Growth Factor Rev.25, 35–44 (2014). 10.1016/j.cytogfr.2013.12.010 PubMed DOI
He, L. et al. Expression and localization of special AT-rich sequence binding protein 2 in murine molar development and the pulp-dentin complex of human healthy teeth and teeth with pulpitis. Exp. Ther. Med.14, 3507–3512 (2017). 10.3892/etm.2017.4980 PubMed DOI PMC
FitzPatrick, D. R. et al. Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum. Mol. Genet.12, 2491–2501 (2003). 10.1093/hmg/ddg248 PubMed DOI
Leoyklang, P. et al. Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum. Mutat.28, 732–738 (2007). 10.1002/humu.20515 PubMed DOI
Rosenfeld, J. A. et al. Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome. PLoS One4, 6568 (2009).10.1371/journal.pone.0006568 PubMed DOI PMC
Döcker, D. et al. Further delineation of the SATB2 phenotype. Eur. J. Hum. Genet.22, 1034 (2014). 10.1038/ejhg.2013.280 PubMed DOI PMC
Seong, B. K. A. et al. SATB2 enhances migration and invasion in osteosarcoma by regulating genes involved in cytoskeletal organization. Oncogene34, 3582–3592 (2015). 10.1038/onc.2014.289 PubMed DOI
Scott, J. et al. Dental radiographic findings in 18 individuals with SATB2-associated syndrome. Clin. Oral Investig.22, 2947–2951 (2018). 10.1007/s00784-018-2702-9 PubMed DOI
Peterková, R. et al. Different morphotypes of the tabby (EDA) dentition in the mouse mandible result from a defect in the mesio-distal segmentation of dental epithelium. Orthod. Craniofac. Res.5, 215–226 (2002). 10.1034/j.1600-0544.2002.02226.x PubMed DOI
Peterkova, R., Lesot, H. & Peterka, M. Phylogenetic memory of developing mammalian dentition. J. Exp. Zool. B Mol. Dev. Evol.306B, 234–250 (2006).10.1002/jez.b.21093 PubMed DOI
Klein, O. D. et al. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev. Cell11, 181–190 (2006). 10.1016/j.devcel.2006.05.014 PubMed DOI PMC
Klein, O. D. et al. Developmental disorders of the dentition: An update. Am. J. Med. Genet. C Semin. Med. Genet.163, 318–332 (2013).10.1002/ajmg.c.31382 PubMed DOI PMC
Kurosaka, H. et al. Craniofacial and dental characteristics of three Japanese individuals with genetically diagnosed SATB2-associated syndrome. Am. J. Med. Genet. A191(7), 1984–1989 (2023). 10.1002/ajmg.a.63225 PubMed DOI
Li, X., Ye, X. & Su, J. The dental phenotype of primary dentition in SATB2-associated syndrome: A report of three cases and literature review. BMC Oral Health22(1), 522 (2022). 10.1186/s12903-022-02594-4 PubMed DOI PMC
Mouillé, M. et al. SATB2-associated syndrome: Characterization of skeletal features and of bone fragility in a prospective cohort of 19 patients. Orphanet. J. Rare Dis.17(1), 100 (2022). 10.1186/s13023-022-02229-5 PubMed DOI PMC
Zarate, Y. A., Bosanko, K., Derar, N. & Fish, J. L. Abnormalities in pharyngeal arch-derived structures in SATB2-associated syndrome. Clin. Genet.10.1111/cge.14540 (2024). 10.1111/cge.14540 PubMed DOI PMC
Dosedělová, H. et al. Fate of the molar dental lamina in the monophyodont mouse. PLoS One10(5), e0127543 (2015). 10.1371/journal.pone.0127543 PubMed DOI PMC
Prochazka, J. et al. Patterning by heritage in mouse molar row development. Proc. Natl. Acad. Sci. U. S. A.107, 15497–15502 (2010). 10.1073/pnas.1002784107 PubMed DOI PMC
Ohazama, A. et al. Primary cilia regulate Shh activity in the control of molar tooth number. Development136, 897–903 (2009). 10.1242/dev.027979 PubMed DOI PMC
Zhang, Q. et al. Loss of the Tg737 protein results in skeletal patterning defects. Dev. Dyn.227, 78–90 (2003). 10.1002/dvdy.10289 PubMed DOI
Ohazama, A. et al. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One3, e4092 (2008). 10.1371/journal.pone.0004092 PubMed DOI PMC
Cobourne, M. T. & Sharpe, P. T. Making up the numbers: The molecular control of mammalian dental formula. Semin. Cell Dev. Biol.21, 314–324 (2010). 10.1016/j.semcdb.2010.01.007 PubMed DOI
Carvalho, B. S. & Irizarry, R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics26, 2363–2367 (2010). 10.1093/bioinformatics/btq431 PubMed DOI PMC
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43, e47–e47 (2015). 10.1093/nar/gkv007 PubMed DOI PMC
Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods12, 115–121 (2015). 10.1038/nmeth.3252 PubMed DOI PMC
Dai, M. et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res.33, e175–e175 (2005). 10.1093/nar/gni179 PubMed DOI PMC
Cunningham, F. et al. Ensembl 2022. Nucleic Acids Res.50, D988–D995 (2022). 10.1093/nar/gkab1049 PubMed DOI PMC
Bolstad, B. M. Low-level analysis of high-density oligonucleotide array data: Background, normalization and summarization (2004).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol.57, 289–300 (1995).10.1111/j.2517-6161.1995.tb02031.x DOI
Sarkans, U. et al. From ArrayExpress to BioStudies. Nucl. Acids Res.49, D1502–D1506 (2021). 10.1093/nar/gkaa1062 PubMed DOI PMC