Tooth development in a model reptile: functional and null generation teeth in the gecko Paroedura picta
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22780101
PubMed Central
PMC3458625
DOI
10.1111/j.1469-7580.2012.01531.x
Knihovny.cz E-zdroje
- MeSH
- buněčná diferenciace MeSH
- ještěři embryologie MeSH
- modely u zvířat * MeSH
- odontogeneze fyziologie MeSH
- zubní sklovina embryologie MeSH
- zuby embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper describes tooth development in a basal squamate, Paroedura picta. Due to its reproductive strategy, mode of development and position within the reptiles, this gecko represents an excellent model organism for the study of reptile development. Here we document the dental pattern and development of non-functional (null generation) and functional generations of teeth during embryonic development. Tooth development is followed from initiation to cytodifferentiation and ankylosis, as the tooth germs develop from bud, through cap to bell stages. The fate of the single generation of non-functional (null generation) teeth is shown to be variable, with some teeth being expelled from the oral cavity, while others are incorporated into the functional bone and teeth, or are absorbed. Fate appears to depend on the initiation site within the oral cavity, with the first null generation teeth forming before formation of the dental lamina. We show evidence for a stratum intermedium layer in the enamel epithelium of functional teeth and show that the bicuspid shape of the teeth is created by asymmetrical deposition of enamel, and not by folding of the inner dental epithelium as observed in mammals.
Zobrazit více v PubMed
Andrews RM. Oviposition frequency of Anolis carolinensis. Copeia. 1985;1:259–262.
Andujar MB, Magloire H, Grimaud JA. Fibronectin in basement membrane of Hertwig's epithelial sheath. Light and electron immunohistochemical localization. Histochemistry. 1984;81:279–282. PubMed
Buchtova M, Boughner JC, Fu K, et al. Embryonic development of Python sebae – II: craniofacial microscopic anatomy, cell proliferation and apoptosis. Zoology (Jena) 2007;110:231–251. PubMed
Buchtova M, Handrigan GR, Tucker AS, et al. Initiation and patterning of the snake dentition are dependent on Sonic hedgehog signaling. Dev Biol. 2008;319:132–145. PubMed
Buffetaut E, Dauphin Y, Jaeger JJ, et al. Prismatic dental enamel in theropod dinosaurs. Naturwissenschaften. 1986;73:326–327. PubMed
Davit-Beal T, Allizard F, Sire JY. Morphological variations in a tooth family through ontogeny in Pleurodeles waltl (Lissamphibia, Caudata) J Morphol. 2006;267:1048–1065. PubMed
Delgado S, Davit-Beal T, Allizard F, et al. Tooth development in a scincid lizard, Chalcides viridanus (Squamata), with particular attention to enamel formation. Cell Tissue Res. 2005;319:71–89. PubMed
Edmund AG. Dentition. In: Gans C,BellairsA'A, Parsons TS., editors. Biology of the Reptilia. London: Academic Press; 1969. pp. 117–200. volume 1.
Evans SE, Prasad GVR, Manhas BK. Rhynchocephalians (Diapsida: Lepidosauria) from the Jurassic Kota Formation of India. Zool J Linn Soc. 2001;133:309–334.
Handrigan GR, Richman JM. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata) Dev Biol. 2010;337:171–186. PubMed
Handrigan GR, Richman JM. Unicuspid and bicuspid tooth crown formation in squamates. J Exp Zool B Mol Dev Evol. 2011;316:598–608. PubMed
Handrigan GR, Leung KJ, Richman JM. Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement. Development. 2010;137:3545–3549. PubMed
Huang X, Bringas P, Jr, Slavkin HC, et al. Fate of HERS during tooth root development. Dev Biol. 2009;334:22–30. PubMed PMC
Huysseune A, Sire JY. Structure and development of first-generation teeth in the cichlid Hemichromis bimaculatus (Teleostei, Cichlidae) Tissue Cell. 1997;29:679–697. PubMed
Jarvinen E, Valimaki K, Pummila M, et al. The taming of the shrew milk teeth. Evol Dev. 2008;10:477–486. PubMed
Jarvinen E, Tummers M, Thesleff I. The role of the dental lamina in mammalian tooth replacement. J Exp Zool B Mol Dev Evol. 2009;312B:281–291. PubMed
Jernvall J, Kettunen P, Karavanova I, et al. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non-dividing cells express growth stimulating Fgf-4 gene. Int J Dev Biol. 1994;38:463–469. PubMed
Keranen SV, Aberg T, Kettunen P, et al. Association of developmental regulatory genes with the development of different molar tooth shapes in two species of rodents. Dev Genes Evol. 1998;208:477–486. PubMed
Koyama E, Wu C, Shimo T, et al. Development of stratum intermedium and its role as a Sonic hedgehog-signaling structure during odontogenesis. Dev Dyn. 2001;222:178–191. PubMed
Kratochvil C, Kubicka L, Landova E. Yolk hormone levels in the synchronously developing eggs of Paroedura picta, a gecko with genetic sex determination. Can J Zool. 2006;84:1683–1687.
Leche W. Über die Zahnentwicklung bei Iguana tuberculata. Anat Anz. 1893;S:793–800.
Lee JC, Clayton D, Einstein S, et al. The reproductive cycle of Anolis sagrei in Southern Florida. Copeia. 1989;4:930–937.
Lemus D, Paz de la Vega Y, Fuenzalida M, et al. In vitro differentiation of tooth buds from embryos and adult lizards (L. gravenhorsti): an ultrastructural comparison. J Morphol. 1980;165:225–236. PubMed
Luan X, Ito Y, Diekwisch TG. Evolution and development of Hertwig's epithelial root sheath. Dev Dyn. 2006;235:1167–1180. PubMed PMC
Maxwell EE, Caldwell MW, Lamoureux DO, et al. Histology of tooth attachment tissues and plicidentine in Varanus (Reptilia: Squamata), and a discussion of the evolution of amniote tooth attachment. J Morphol. 2011;272:1170–1181. PubMed
McIntosh J, Anderton X, Flores-de-Jacoby L, et al. Tooth attachment apparatus in young Caiman sclerops. Arch Oral Biol. 1968;13:735–743. PubMed
Moustakas JE, Smith KK, Hlusko LJ. Evolution and development of the mammalian dentition: insights from the marsupial Monodelphis domestica. Dev Dyn. 2011;240:232–239. PubMed
Nagashima H, Kuraku S, Uchida K, et al. On the carapacial ridge in turtle embryos: its developmental origin, function and the chelonian body plan. Development. 2007;134:2219–2226. PubMed
Nakamura M, Bringas P, Jr, Slavkin HC. Inner enamel epithelia synthesize and secrete enamel proteins during mouse molar occlusal ‘enamel-free area’ development. J Craniofac Genet Dev Biol. 1991;11:96–104. PubMed
Noro M, Uejima A, Abe G, et al. Normal developmental stages of the Madagascar ground gecko Paroedura pictus with special reference to limb morphogenesis. Dev Dyn. 2009;238:100–109. PubMed
Ogawa T. [A histological study of the gekko tooth (author's translation)] Shigaku. 1977;64:1377–1388. PubMed
Ohazama A, Blackburn J, Porntaveetus T, et al. A role for suppressed incisor cuspal morphogenesis in the evolution of mammalian heterodont dentition. Proc Natl Acad Sci U S A. 2010;107:92–97. PubMed PMC
Osborn JW. The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787) Proc R Soc Lond B Biol Sci. 1971;179:261–289. PubMed
Osborn JW. On the control of tooth replacement in reptiles and its relationship to growth. J Theor Biol. 1974;46:509–527. PubMed
Osborn JW. Relationship between growth and the pattern of tooth initiation in alligator embryos. J Dent Res. 1998;77:1730–1738. PubMed
Owens PD. Ultrastructure of Hertwig's epithelial root sheath during early root development in premolar teeth in dogs. Arch Oral Biol. 1978;23:91–104. PubMed
Paynter KJ, Pudy G. A study of the structure, chemical nature, and development of cementum in the rat. Anat Rec. 1958;131:233–251. PubMed
Peyer B. Comparative Odontology. Chicago: University Chicago press; 1986.
Prochazka J, Pantalacci S, Churava S, et al. Patterning by heritage in mouse molar row development. Proc Natl Acad Sci U S A. 2010;107:15497–15502. PubMed PMC
Reif W-E. Morphogenesis, pattern formation and function of the dentition of Heterodontus (Selachii) Zoomorphologie. 1976;83:1–47.
Richman JM, Handrigan GR. Reptilian tooth development. Genesis. 2011;49:247–260. PubMed
Salazar-Ciudad I, Jernvall J. A computational model of teeth and the developmental origins of morphological variation. Nature. 2010;464:583–586. PubMed
Sanger TJ, Losos JB, Gibson-Brown JJ. A developmental staging series for the lizard genus Anolis: a new system for the integration of evolution, development, and ecology. J Morphol. 2008;269:129–137. PubMed
Sasagawa I, Ishiyama M. Fine structure and Ca-ATPase activity of the stratum intermedium cells during odontogenesis in gars, Lepisosteus, Actinopterygii. Connect Tissue Res. 2002;43:505–508. PubMed
Selvig KA. Electron microscopy of Hertwig's epithelial sheath and of early dentin and cementum formation in the mouse incisor. Acta Odontol Scand. 1963;21:175–186. PubMed
Sire JY, Davit-Beal T, Delgado S, et al. First-generation teeth in nonmammalian lineages: evidence for a conserved ancestral character? Microsc Res Tech. 2002;59:408–434. PubMed
Stembirek J, Buchtova M, Kral T, et al. Early morphogenesis of heterodont dentition in minipigs. Eur J Oral Sci. 2010;118:547–558. PubMed
Sumida SS, Murphy RW. Form and function of the tooth crown structure in gekkonid lizards (Reptilia, Squamata, Gekkonidae) Can J Zool. 1987;65:2886–2892.
Ten Cate AR. The role of epithelium in the development, structure and function of the tissues of tooth support. Oral Dis. 1996;2:55–62. PubMed
Thomas HF, Kollar EJ. Differentiation of odontoblasts in grafted recombinants of murine epithelial root sheath and dental mesenchyme. Arch Oral Biol. 1989;34:27–35. PubMed
Vidal N, Hedges SB. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol. 2005;328:1000–1008. PubMed
Vonk FJ, Admiraal JF, Jackson K, et al. Evolutionary origin and development of snake fangs. Nature. 2008;454:630–633. PubMed
Westergaard B. Early dentition development in the lower jaws of Anguis fragilis and Lacertu agilis. Memo SOC Fauna Flora Fenn. 1988a;64:148–151.
Westergaard B. The pattern of embryonic tooth initiation in reptiles. Teeth revised. Mem Mus Nat Hist Paris Ser C. 1988b;53:55–63.
Westergaard B, Ferguson MW. Development of the dentition in Alligator mississipiensis. Early embryonic development in the lower jaw. J Zool (Lond) 1986;210:575–597.
Westergaard B, Ferguson MW. Development of the dentition in Alligator mississippiensis: upper jaw dental and craniofacial development in embryos, hatchlings, and young juveniles, with a comparison to lower jaw development. Am J Anat. 1990;187:393–421. PubMed
Wiens JJ, Kuczynski CA, Townsend T, et al. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst Biol. 2010;59:674–688. PubMed
Yamanaka A, Yasui K, Sonomura T, et al. Development of deciduous and permanent dentitions in the upper jaw of the house shrew (Suncus murinus. Arch Oral Biol. 2010;55:279–287. PubMed
Zahradnicek O, Horacek I, Tucker AS. Viperous fangs: development and evolution of the venom canal. Mech Dev. 2008;125:786–796. PubMed
Role of Cell Death in Cellular Processes During Odontogenesis