Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects

. 2021 Jan ; 65 (1) : 59-67. [epub] 20200425

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32335726

Grantová podpora
18-23597S Grantová Agentura České Republiky
CA15211 European Cooperation in Science and Technology

Odkazy

PubMed 32335726
PubMed Central PMC7782448
DOI 10.1007/s00484-020-01885-1
PII: 10.1007/s00484-020-01885-1
Knihovny.cz E-zdroje

Mechanisms of how electromagnetic (EM) field acts on biological systems are governed by the same physics regardless of the origin of the EM field (technological, atmospheric...), given that EM parameters are the same. We draw from a large body of literature of bioeffects of a man-made electromagnetic field. In this paper, we performed a focused review on selected possible mechanisms of how atmospheric electromagnetic phenomena can act at the molecular and cellular level. We first briefly review the range of frequencies and field strengths for both electric and magnetic fields in the atmosphere. Then, we focused on a concise description of the current knowledge on weak electric and magnetic field bioeffects with possible molecular mechanisms at the basis of possible EM field bioeffects combined with modeling strategies to estimate reliable outcomes and speculate about the biological effects linked to lightning or pyroelectricity. Indeed, we bring pyroelectricity as a natural source of voltage gradients previously unexplored. While very different from lightning, it can result in similar bioeffects based on similar mechanisms, which can lead to close speculations on the importance of these atmospheric electric fields in the evolution.

Zobrazit více v PubMed

Apollonio F, Liberti M, Paffi A, et al. Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Trans Microwave Theory Tech. 2013;61:2031–2045. doi: 10.1109/TMTT.2013.2250298. DOI

Avakyan SV, Voronin NA. Possible mechanisms for the influence of heliogeophysical activity on the biosphere and the weather. J Opt Technol. 2006;73:281. doi: 10.1364/JOT.73.000281. DOI

Azan A, Gailliègue F, Mir LM, Breton M. Cell membrane electropulsation: chemical analysis of cell membrane modifications and associated transport mechanisms. In: Kulbacka J, Satkauskas S, editors. Transport across natural and modified biological membranes and its implications in physiology and therapy. Cham: Springer International Publishing; 2017. pp. 59–71. PubMed

Bianchi C, Meloni A. Natural and man-made terrestrial electromagnetic noise: an outlook. Ann Geophys. 2007;50:435–446.

Breton M, Delemotte L, Silve A, et al. Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. J Am Chem Soc. 2012;134:13938–13941. doi: 10.1021/ja3052365. PubMed DOI

Carrubba S, Frilot C, Chesson AL, Marino AA. Evidence of a nonlinear human magnetic sense. Neuroscience. 2007;144:356–367. doi: 10.1016/j.neuroscience.2006.08.068. PubMed DOI

Ceremonie H, Buret F, Simonet P, Vogel TM. Natural electrotransformation of lightning-competent Pseudomonas sp. strain N3 in artificial soil microcosms. Appl Environ Microbiol. 2006;72:2385–2389. doi: 10.1128/AEM.72.4.2385-2389.2006. PubMed DOI PMC

Chafai DE, Sulimenko V, Havelka D, et al. Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater. 2019;31:1903636. doi: 10.1002/adma.201903636. PubMed DOI

Close J. Are stress responses to geomagnetic storms mediated by the cryptochrome compass system? Proc R Soc B Biol Sci. 2012;279:2081–2090. doi: 10.1098/rspb.2012.0324. PubMed DOI PMC

Denzi A, della Valle E, Esposito G, et al. Technological and theoretical aspects for testing electroporation on liposomes. Biomed Res Int. 2017;2017:1–10. doi: 10.1155/2017/5092704. PubMed DOI PMC

Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann resonance band. Sci Rep. 2019;9:1–10. doi: 10.1038/s41598-018-36341-z. PubMed DOI PMC

Finlay CC, Aubert J, Gillet N. Gyre-driven decay of the Earth’s magnetic dipole. Nat Commun. 2016;7:10422–10428. doi: 10.1038/ncomms10422. PubMed DOI PMC

Foley LE, Gegear RJ, Reppert SM. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun. 2011;2:356. doi: 10.1038/ncomms1364. PubMed DOI PMC

García-Sánchez T, Muscat A, Leray I, Mir LM. Pyroelectricity as a possible mechanism for cell membrane permeabilization. Bioelectrochemistry. 2018;119:227–233. doi: 10.1016/j.bioelechem.2017.10.007. PubMed DOI

García-Sánchez T, Leray I, Ronchetti M, Cadossi R, Mir LM. Impact of the number of electric pulses on cell electrochemotherapy in vitro: limits of linearity and saturation. Bioelectrochemistry. 2019;129:218–227. doi: 10.1016/j.bioelechem.2019.05.021. PubMed DOI

Gegear RJ, Casselman A, Waddell S, Reppert SM. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature. 2008;454:1014–1018. doi: 10.1038/nature07183. PubMed DOI PMC

Hayakawa M, Hattori K, Ando Y. Natural electromagnetic phenomena and electromagnetic theory: a review. IEEJ Trans Fundam Mater. 2004;124:72–79. doi: 10.1541/ieejfms.124.72. DOI

Hulot G, Eymin C, Langlais B, Mandea M, Olsen N. Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature. 2002;416:620–623. doi: 10.1038/416620a. PubMed DOI

Joshi JC, Dawar AL. Pyroelectric materials, their properties and applications. Phys Stat Sol A. 1982;70:353–369. doi: 10.1002/pssa.2210700202. DOI

Kitano H. Computational systems biology. Nature. 2002;420:206. doi: 10.1038/nature01254. PubMed DOI

Kotnik T. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer. Phys Life Rev. 2013;10:351–370. doi: 10.1016/j.plrev.2013.05.001. PubMed DOI

Kuang W, Bloxham J. An Earth-like numerical dynamo model. Nature. 1997;389:371–374. doi: 10.1038/38712. DOI

Lang SB. Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today. 2005;58:31. doi: 10.1063/1.2062916. DOI

Liberti M, Apollonio F, Merla C, dʼInzeo G. Proving lightning role in the evolution of life. Phys Life Rev. 2013;10:380–381. doi: 10.1016/j.plrev.2013.07.026. PubMed DOI

Lucia O, Garcia-Sanchez T, Sarnago H et al (2019) Industrial electronics for biomedical applications: electroporation as a new tool for cancer treatment. IEEE Ind Electron Mag. 10.1109/MIE.2019.2942377

Marracino P, Havelka D, Průša J, Liberti M, Tuszynski J, Ayoub AT, Apollonio F, Cifra M. Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep. 2019;9:10477. doi: 10.1038/s41598-019-46636-4. PubMed DOI PMC

McElhinny M, McFadden PL (1998) The magnetic field of the earth: paleomagnetism, the core, and the deep mantle. Academic Press

Mir LM. Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): past, current, and future. Mol Biotechnol. 2009;43:167–176. doi: 10.1007/s12033-009-9192-6. PubMed DOI

Panagopoulos DJ, Balmori A. On the biophysical mechanism of sensing atmospheric discharges by living organisms. Sci Total Environ. 2017;599–600:2026–2034. doi: 10.1016/j.scitotenv.2017.05.089. PubMed DOI

Parker EN, Kennel CF, Lanzerotti LJ. Solar system plasma physics. Co: North-Holland Pub; 1979.

Petri A-K, Schmiedchen K, Stunder D, Dechent D, Kraus T, Bailey WH, Driessen S. Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review. Environ Health. 2017;16:41. doi: 10.1186/s12940-017-0248-y. PubMed DOI PMC

Repacholi MH, Greenebaum B. Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics. 1999;20:133–160. doi: 10.1002/(SICI)1521-186X(1999)20:3<133::AID-BEM1>3.0.CO;2-O. PubMed DOI

Ross E, Chaplin WJ. The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol Phys. 2019;294:8. doi: 10.1007/s11207-019-1397-7. PubMed DOI PMC

Rycroft MJ, Israelsson S, Price C. The global atmospheric electric circuit, solar activity and climate change. J Atmos Sol Terr Phys. 2000;62:1563–1576. doi: 10.1016/S1364-6826(00)00112-7. DOI

Rycroft MJ, Nicoll KA, Aplin KL, Giles Harrison R. Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Sol Terr Phys. 2012;90–91:198–211. doi: 10.1016/j.jastp.2012.03.015. DOI

Siingh D, Gopalakrishnan V, Singh RP, et al. The atmospheric global electric circuit: an overview. Atmos Res. 2007;84:91–110. doi: 10.1016/j.atmosres.2006.05.005. DOI

Thoss F, Bartsch B. The geomagnetic field influences the sensitivity of our eyes. Vis Res. 2007;47:1036–1041. doi: 10.1016/j.visres.2007.01.022. PubMed DOI

Votis CI, Tatsis G, Christofilakis V, Chronopoulos SK, Kostarakis P, Tritakis V, Repapis C. A new portable ELF Schumann resonance receiver: design and detailed analysis of the antenna and the analog front-end. J Wireless Com Network. 2018;2018:155–112. doi: 10.1186/s13638-018-1157-7. DOI

Weiss N. Dynamos in planets, stars and galaxies. Astron Geophys. 2002;43:3.09–3.15. doi: 10.1046/j.1468-4004.2002.43309.x. DOI

Williams ER, Mushtak VC, Nickolaenko AP. Distinguishing ionospheric models using Schumann resonance spectra. J Geophys Res. 2006;111:D16107. doi: 10.1029/2005JD006944. DOI

World Health Organization, others . Environmental health criteria 232. Geneva: Static fields. World Health Organization; 2006.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Challenges in coupling atmospheric electricity with biological systems

. 2021 Jan ; 65 (1) : 45-58. [epub] 20200714

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...