• This record comes from PubMed

Reversible and Irreversible Modulation of Tubulin Self-Assembly by Intense Nanosecond Pulsed Electric Fields

. 2019 Sep ; 31 (39) : e1903636. [epub] 20190813

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
17-11898S Czech Science Foundation
18-27197S Czech Science Foundation
18-23597S Czech Science Foundation
RVO: 68378050 institutional research
RVO: 67985823 institutional research
CA15211 COST
SAV-18-11 COST

Tubulin self-assembly into microtubules is a fascinating natural phenomenon. Its importance is not just crucial for functional and structural biological processes, but it also serves as an inspiration for synthetic nanomaterial innovations. The modulation of the tubulin self-assembly process without introducing additional chemical inhibitors/promoters or stabilizers has remained an elusive process. This work reports a versatile and vigorous strategy for controlling tubulin self-assembly by nanosecond electropulses (nsEPs). The polymerization assessed by turbidimetry is dependent on nsEPs dosage. The kinetics of microtubules formation is tightly linked to the nsEPs effects on structural properties of tubulin, and tubulin-solvent interface, assessed by autofluorescence, and the zeta potential. Moreover, the overall size of tubulin assessed by dynamic light scattering is affected as well. Additionally, atomic force microscopy imaging reveals the formation of different assemblies reflecting applied nsEPs. It is suggested that changes in C-terminal modification states alter tubulin polymerization-competent conformations. Although the assembled tubulin preserve their integral structure, they might exhibit a broad range of new properties important for their functions. Thus, these transient conformation changes of tubulin and their collective properties can result in new applications.

See more in PubMed

L. Pellegrini, A. Wetzel, S. Granno, G. Heatom, K. Harvey, Cell. Mol. Life Sci. 2017, 74, 409.

J. Dubey, N. Ratnakaran, S. P. Koushika, Front. Cell. Neurosci. 2015, 9, 343.

S. Behrens, K. Rahn, W. Habicht, K. J. Böhm, H. Rösner, E. Dinjus, E. Unger, Adv. Mater. 2002, 14, 1621.

S. Behrens, W. Habicht, K. Wagner, E. Unger, Adv. Mater. 2006, 18, 284.

D. G. Bachand, E. D. Spoerke, M. J. Stevens, Biotechnol. Bioeng. 2015, 112, 1065.

G. J. Brouhard, L. M. Rice, Nat. Rev. Mol. Cell Biol. 2018, 19, 451.

L. Hamon, P. Savarin, P. A. Curmi, D. Pastre, Biophys. J. 2011,101, 205.

Y. Liu, Y. Guo, J. M. Valles, J. X. Tang, Proc. Natl. Acad. Sci. USA 2006, 103, 8.

B. V. D. Vaart, A. Akhmanova, A. Straube, Biochem. Soc. Trans. 2009, 37, 1007.

C. Dumontet, M. A. Jordan, Nat. Rev. Drug Discovery 2010, 9, 790.

E. D. Spoerke, A. K. Boal, G. D. Bachand, B. C. Bunker, ACS Nano 2013, 7, 2012.

L. X. Peng, M. T. Hsu, M. Bonomi, D. A. Agard, M. P. Jacobson, PLoS Comput. Biol. 2014, 10, 2.

S. W. Manka, C. A. Moores, Nat. Struct. Mol. Biol. 2018, 25, 607.

A. Mershin, A. A. Kolomenski, H. A. Schuessler, D. V. Nanopoulos, BioSystems 2004, 77, 73.

J. A. Tuszynski, E. J. Carpenter, J. T. Huzil, W. Malinski, T. Luchko, R. F. Luduen, Int. J. Dev. Biol. 2006, 50, 341.

J. J. Timmons, J. Preto, J. A. Tuszynski, E. T. Wong, PLoS One 2018, 13, e0202141.

T. Berghöfer, C. Eing, B. Flickinger, P. Hohenberger, L. H. Wegner, W. Frey, P. Nick, Biochem. Biophys. Res. Commun. 2009, 387, 590.

L. Carr, S. M. Bardet, R. C. Burke, D. Arnaud-Cormos, P. Leveque, R. P. O'Connor, Sci. Rep. 2017, 7, 41267.

S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg, O. Martín-Belloso, J. Protein Chem. 2000, 19, 637.

V. N. Uversky, Y. L. Lyubchenko, Bio-Nanoimaging: Protein Misfolding & Aggregation, Elsevier Inc. 2013, p. 526.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science, New York 2006.

J. T. Vivian, P. R. Callis, Biophys. J. 2001, 80, 2093

G. Sancataldo, V. Vetri, V. Fodera, G. D. Cara, V. Militello, M. Leone, PLoS One 2014, 9, e84552.

V. Viklický, P. Dráber, J. Hašek, J. Bártek, Cell Biol. Int. Rep. 1982, 6, 725.

I. Linhartová, P. Dráber, E. Dráberová, V. Viklický, Biochem. J. 1992, 288, 919.

V. Sulimenko, T. Sulimenko, S. Poznanovic, V. Nechiporuk-Zloy, K. Böhm, L. Macůrek, E. Unger, P. Dráber, Biochem. J. 2002, 365, 889.

J. L. Malcos, W. O. Hancock, Appl. Microbiol. Biotechnol. 2011, 90, 1.

D. L. Sekulic, M. V. Sataric, Facta Univ., Ser.: Electron. Energ. 2015, 28, 1.

Y. Wen, N. K. Geitner, R. Chen, F. Ding, P. C. Chen, R. E. Andorfer, P. N. Govindan, P. C. Ke, RSC Adv. 2013, 3, 22002.

F. Ruggeri, F. Zosel, N. Mutter, M. Różycka, M. Wojtas, A. Ożyhar, B. Schuler, M. Krishnan, Nat. Nanotechnol. 2017, 12, 488.

T. Krouglova, J. Vercammen, Y. Engelborghs, Biophys. J. 2004, 87, 2635.

D. D. Georgiev, S. N. Papaioanou, J. F. Glazebrook, Biomed. Rev. 2004, 15, 67.

C. P. Fees, J. K. Moore, Life Sci. Alliance 2018, 1, e201800054.

E. Solomaha, H. C. Palfrey, Biochem. J. 2005, 391, 601.

K. P. Wall, M. Pagratis, G. Armstrong, J. L. Balsbaugh, E. Verbeke, C. G. Pearson, L. E. Hough, ACS Chem. Biol. 2016, 11, 2981.

R. Galland, P. Leduc, C. Guérin, D. Peyrade, L. Blanchoin, M. Théry, Nat. Mater. 2013, 12, 416.

Newest 20 citations...

See more in
Medvik | PubMed

Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence

. 2024 Sep 30 ; 14 (1) : 22649. [epub] 20240930

Molecular dynamics simulation dataset of a kinesin on tubulin heterodimers in electric field

. 2024 Feb ; 52 () : 109765. [epub] 20231104

Electro-detachment of kinesin motor domain from microtubule in silico

. 2023 ; 21 () : 1349-1361. [epub] 20230121

Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network

. 2022 Feb 14 ; 12 (1) : 2462. [epub] 20220214

Molecular dynamics simulation dataset of a microtubule ring in electric field

. 2021 Oct ; 38 () : 107337. [epub] 20210902

Electro-opening of a microtubule lattice in silico

. 2021 ; 19 () : 1488-1496. [epub] 20210304

Challenges in coupling atmospheric electricity with biological systems

. 2021 Jan ; 65 (1) : 45-58. [epub] 20200714

Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects

. 2021 Jan ; 65 (1) : 59-67. [epub] 20200425

Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor

. 2019 Dec 23 ; 9 (1) : 19721. [epub] 20191223

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...