Reversible and Irreversible Modulation of Tubulin Self-Assembly by Intense Nanosecond Pulsed Electric Fields
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
17-11898S
Czech Science Foundation
18-27197S
Czech Science Foundation
18-23597S
Czech Science Foundation
RVO: 68378050
institutional research
RVO: 67985823
institutional research
CA15211
COST
SAV-18-11
COST
- Keywords
- microtubules, nanosecond pulsed electric field, self-assembly, tubulin,
- MeSH
- Electricity * MeSH
- Hydrodynamics MeSH
- Kinetics MeSH
- Protein Structure, Quaternary MeSH
- Microtubules metabolism MeSH
- Models, Molecular MeSH
- Protein Multimerization * MeSH
- Tubulin chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Tubulin MeSH
Tubulin self-assembly into microtubules is a fascinating natural phenomenon. Its importance is not just crucial for functional and structural biological processes, but it also serves as an inspiration for synthetic nanomaterial innovations. The modulation of the tubulin self-assembly process without introducing additional chemical inhibitors/promoters or stabilizers has remained an elusive process. This work reports a versatile and vigorous strategy for controlling tubulin self-assembly by nanosecond electropulses (nsEPs). The polymerization assessed by turbidimetry is dependent on nsEPs dosage. The kinetics of microtubules formation is tightly linked to the nsEPs effects on structural properties of tubulin, and tubulin-solvent interface, assessed by autofluorescence, and the zeta potential. Moreover, the overall size of tubulin assessed by dynamic light scattering is affected as well. Additionally, atomic force microscopy imaging reveals the formation of different assemblies reflecting applied nsEPs. It is suggested that changes in C-terminal modification states alter tubulin polymerization-competent conformations. Although the assembled tubulin preserve their integral structure, they might exhibit a broad range of new properties important for their functions. Thus, these transient conformation changes of tubulin and their collective properties can result in new applications.
See more in PubMed
L. Pellegrini, A. Wetzel, S. Granno, G. Heatom, K. Harvey, Cell. Mol. Life Sci. 2017, 74, 409.
J. Dubey, N. Ratnakaran, S. P. Koushika, Front. Cell. Neurosci. 2015, 9, 343.
S. Behrens, K. Rahn, W. Habicht, K. J. Böhm, H. Rösner, E. Dinjus, E. Unger, Adv. Mater. 2002, 14, 1621.
S. Behrens, W. Habicht, K. Wagner, E. Unger, Adv. Mater. 2006, 18, 284.
D. G. Bachand, E. D. Spoerke, M. J. Stevens, Biotechnol. Bioeng. 2015, 112, 1065.
G. J. Brouhard, L. M. Rice, Nat. Rev. Mol. Cell Biol. 2018, 19, 451.
L. Hamon, P. Savarin, P. A. Curmi, D. Pastre, Biophys. J. 2011,101, 205.
Y. Liu, Y. Guo, J. M. Valles, J. X. Tang, Proc. Natl. Acad. Sci. USA 2006, 103, 8.
B. V. D. Vaart, A. Akhmanova, A. Straube, Biochem. Soc. Trans. 2009, 37, 1007.
C. Dumontet, M. A. Jordan, Nat. Rev. Drug Discovery 2010, 9, 790.
E. D. Spoerke, A. K. Boal, G. D. Bachand, B. C. Bunker, ACS Nano 2013, 7, 2012.
L. X. Peng, M. T. Hsu, M. Bonomi, D. A. Agard, M. P. Jacobson, PLoS Comput. Biol. 2014, 10, 2.
S. W. Manka, C. A. Moores, Nat. Struct. Mol. Biol. 2018, 25, 607.
A. Mershin, A. A. Kolomenski, H. A. Schuessler, D. V. Nanopoulos, BioSystems 2004, 77, 73.
J. A. Tuszynski, E. J. Carpenter, J. T. Huzil, W. Malinski, T. Luchko, R. F. Luduen, Int. J. Dev. Biol. 2006, 50, 341.
J. J. Timmons, J. Preto, J. A. Tuszynski, E. T. Wong, PLoS One 2018, 13, e0202141.
T. Berghöfer, C. Eing, B. Flickinger, P. Hohenberger, L. H. Wegner, W. Frey, P. Nick, Biochem. Biophys. Res. Commun. 2009, 387, 590.
L. Carr, S. M. Bardet, R. C. Burke, D. Arnaud-Cormos, P. Leveque, R. P. O'Connor, Sci. Rep. 2017, 7, 41267.
S. Gorinstein, I. Goshev, S. Moncheva, M. Zemser, M. Weisz, A. Caspi, I. Libman, H. T. Lerner, S. Trakhtenberg, O. Martín-Belloso, J. Protein Chem. 2000, 19, 637.
V. N. Uversky, Y. L. Lyubchenko, Bio-Nanoimaging: Protein Misfolding & Aggregation, Elsevier Inc. 2013, p. 526.
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Science, New York 2006.
J. T. Vivian, P. R. Callis, Biophys. J. 2001, 80, 2093
G. Sancataldo, V. Vetri, V. Fodera, G. D. Cara, V. Militello, M. Leone, PLoS One 2014, 9, e84552.
V. Viklický, P. Dráber, J. Hašek, J. Bártek, Cell Biol. Int. Rep. 1982, 6, 725.
I. Linhartová, P. Dráber, E. Dráberová, V. Viklický, Biochem. J. 1992, 288, 919.
V. Sulimenko, T. Sulimenko, S. Poznanovic, V. Nechiporuk-Zloy, K. Böhm, L. Macůrek, E. Unger, P. Dráber, Biochem. J. 2002, 365, 889.
J. L. Malcos, W. O. Hancock, Appl. Microbiol. Biotechnol. 2011, 90, 1.
D. L. Sekulic, M. V. Sataric, Facta Univ., Ser.: Electron. Energ. 2015, 28, 1.
Y. Wen, N. K. Geitner, R. Chen, F. Ding, P. C. Chen, R. E. Andorfer, P. N. Govindan, P. C. Ke, RSC Adv. 2013, 3, 22002.
F. Ruggeri, F. Zosel, N. Mutter, M. Różycka, M. Wojtas, A. Ożyhar, B. Schuler, M. Krishnan, Nat. Nanotechnol. 2017, 12, 488.
T. Krouglova, J. Vercammen, Y. Engelborghs, Biophys. J. 2004, 87, 2635.
D. D. Georgiev, S. N. Papaioanou, J. F. Glazebrook, Biomed. Rev. 2004, 15, 67.
C. P. Fees, J. K. Moore, Life Sci. Alliance 2018, 1, e201800054.
E. Solomaha, H. C. Palfrey, Biochem. J. 2005, 391, 601.
K. P. Wall, M. Pagratis, G. Armstrong, J. L. Balsbaugh, E. Verbeke, C. G. Pearson, L. E. Hough, ACS Chem. Biol. 2016, 11, 2981.
R. Galland, P. Leduc, C. Guérin, D. Peyrade, L. Blanchoin, M. Théry, Nat. Mater. 2013, 12, 416.
Molecular dynamics simulation dataset of a kinesin on tubulin heterodimers in electric field
Electro-detachment of kinesin motor domain from microtubule in silico
Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network
Molecular dynamics simulation dataset of a microtubule ring in electric field
Electro-opening of a microtubule lattice in silico
Challenges in coupling atmospheric electricity with biological systems
Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor