Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-06873X
Grantová Agentura České Republiky
CZ.02.01.01/00/22 008/000455
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39349538
PubMed Central
PMC11442601
DOI
10.1038/s41598-024-71626-6
PII: 10.1038/s41598-024-71626-6
Knihovny.cz E-zdroje
- MeSH
- antioxidancia * metabolismus MeSH
- elektřina MeSH
- katalasa metabolismus MeSH
- luminiscence MeSH
- luminiscenční měření * metody MeSH
- oxidace-redukce * MeSH
- peroxid vodíku metabolismus MeSH
- reaktivní formy kyslíku * metabolismus MeSH
- sérový albumin hovězí * metabolismus MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- katalasa MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku * MeSH
- sérový albumin hovězí * MeSH
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence of H 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of both H 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes after H 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Institute of Photonics and Electronics of the Czech Academy of Sciences 18200 Prague Czechia
J Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences 18200 Prague Czechia
Zobrazit více v PubMed
Bhonsle, S., Neal, R. E. & Davalos, R. V. Preclinical studies on irreversible electroporation, in Handbook of Electroporation, 1527–1542 (2016).
Serša, G., Bosnjak, M., Čemažar, M. & Heller, R. Preclinical Studies on Electrochemotherapy, in (ed Miklavčič, D.) Handbook of Electroporation, 1511–1525 (Springer International Publishing, 2017). 10.1007/978-3-319-32886-7_45
Todorovic, V. & Cemazar, M. Combined treatment of electrochemotherapy with immunomodulators, in Handbook of Electroporation, 1717–1731 (2016).
Gehl, J. & Serša, G. Electrochemotherapy and its clinical applications, in (ed Miklavčič) Handbook of Electroporation, 1771–1786 (Springer International Publishing 2017). 10.1007/978-3-319-32886-7_91
Bulysheva, A. A. & Heller, R. Gene electrotransfer for ischemic tissue, in (ed Miklavčič) Handbook of Electroporation, 1665–1677 (Springer International Publishing, 2017). 10.1007/978-3-319-32886-7_58
Shirley, S. A. Delivery of Cytokines Using Gene Electrotransfer. In (ed Miklavčič, D.) Handbook of Electroporation, 1755–1768 (Springer International Publishing, Cham, 2017). 10.1007/978-3-319-32886-7_189
Liu, L., Morrow, M. P. & Bagarazzi, M. Clinical use of DNA vaccines, in (ed Miklavčič, D.) Handbook of Electroporation, 1933–1952 (Springer International Publishing, Cham, 2017). 10.1007/978-3-319-32886-7_106
Rosazza, C., Haberl Meglic, S., Zumbusch, A., Rols, M.-P. & Miklavcic, D. Gene electrotransfer: A mechanistic perspective. Curr. Gene Ther.16, 98–129 (2016). PubMed PMC
Zhao, W. & Yang, R. Pulsed electric fields for inactivation of endogenous enzymes in foods, in (ed Miklavčič, D.) Handbook of Electroporation, 2239–2251 (Springer International Publishing, 2017). 10.1007/978-3-319-32886-7_130
Schottroff, F., Krottenthaler, A. & Jäger, H. Stress induction and response, inactivation, and recovery of vegetative microorganisms by pulsed electric fields, in (ed Miklavčič, D.) Handbook of electroporation, 2539–2557 (Springer International Publishing, 2017). 10.1007/978-3-319-32886-7_183
Patras, A., Choudhary, P. & Rawson, A. Recovery of primary and secondary plant metabolites by pulsed electric field treatment, in (ed Miklavčič, D.) Handbook of Electroporation, 2517–2537 (Springer International Publishing, 2017). 10.1007/978-3-319-32886-7_182
Sarkis, J. R., Boussetta, N. & Vorobiev, E. Application of pulsed electric energies for oil and polyphenol extraction from sesame cake and sesame seeds, in Handbook of Electroporation, 2699–2712 (2017).
Vorobiev, E. & Lebovka, N. Application of pulsed electric fields for root and tuber crops biorefinery, in Handbook of Electroporation, 2899–2922 (2017).
Chafai, D. E. et al. Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv. Mater.31, 1903636. 10.1002/adma.201903636 (2019). PubMed
Ho, S. Y., Mittal, G. S. & Cross, J. D. Effects of high field electric pulses on the activity of selected enzymes. J. Food Eng.31, 69–84 (1997).
Salameh, Z. S. et al. Harnessing the Electrochemical Effects of Electroporation-Based Therapies to Enhance Anti-tumor Immune Responses. Ann. Biomed. Eng.52, 48–56. 10.1007/s10439-023-03403-x (2023). PubMed PMC
Ruzgys, P., Novickij, V., Novickij, J. & Šatkauskas, S. Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range. Bioelectrochemistry127, 87–93 (2019). PubMed
Pataro, G., Donsì, G. & Ferrari, G. Modeling of electrochemical reactions during pulsed electric field treatment, in (ed Miklavčič, D.) Handbook of Electroporation, 1059–1088 (Springer International Publishing, 2017). 10.1007/978-3-319-32886-7_5.
Zhang, S., Yang, R., Zhao, W., Liang, Q. & Zhang, Z. The first ESR observation of radical species generated under pulsed electric fields processing. LWT Food Sci. Technol.44, 1233–1235 (2011).
Cifra, M. & Pospíšil, P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J. Photochem. Photobiol. B139, 2–10 (2014). PubMed
Vahalová, P. & Cifra, M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. Prog. Biophys. Mol. Biol.177, 80–108. 10.1016/j.pbiomolbio.2022.10.009 (2023). PubMed
Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol.23, 499–515 (2022). PubMed
Yarmush, M. L., Golberg, A., Serša, G., Kotnik, T. & Miklavčič, D. Electroporation-based technologies for medicine: Principles, applications, and challenges. Ann. Rev. Biomed. Eng.16, 295–320. 10.1146/annurev-bioeng-071813-104622 (2014). PubMed
English, N. J. & Waldron, C. J. Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges. Phys. Chem. Chem. Phys.17, 12407–12440 (2015). PubMed
Noble, B. B., Todorova, N. & Yarovsky, I. Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys. Chem. Chem. Phys.24, 6327–6348 (2022). PubMed
Průša, J., Ayoub, A. T., Chafai, D. E., Havelka, D. & Cifra, M. Electro-opening of a microtubule lattice in silico. Comput. Struct. Biotechnol. J.19, 1488–1496 (2021). PubMed PMC
Wang, J., Vanga, S. K. & Raghavan, V. Structural responses of kiwifruit allergen Act d 2 to thermal and electric field stresses based on molecular dynamics simulations and experiments. Food Funct.11, 1373–1384. 10.1039/C9FO02427A (2020). PubMed
Marracino, P. et al. Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci. Rep.9, 10477. 10.1038/s41598-019-46636-4 (2019). PubMed PMC
Průša, J. & Cifra, M. Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci. Rep.9, 19721 (2019). PubMed PMC
English, N. J. & Mooney, D. A. Denaturation of hen egg white lysozyme in electromagnetic fields: A molecular dynamics study. J. Chem. Phys.126, 091105 (2007). PubMed
Marracino, P., Apollonio, F., Liberti, M., d’Inzeo, G. & Amadei, A. Effect of high exogenous electric pulses on protein conformation: Myoglobin as a case study. J. Phys. Chem. B117, 2273–2279. 10.1021/jp309857b (2013). PubMed
Sinelnikova, A. et al. Reproducibility in the unfolding process of protein induced by an external electric field. Chem. Sci.12, 2030–2038 (2021). PubMed PMC
Zhao, W. & Yang, R. Experimental study on conformational changes of lysozyme in solution induced by pulsed electric field and thermal stresses. J. Phys. Chem. B114, 503–510. 10.1021/jp9081189 (2010). PubMed
Wang, R. et al. Binding affinity of curcumin to bovine serum albumin enhanced by pulsed electric field pretreatment. Food Chem.377, 131945 (2022). PubMed
Zhao, W. & Yang, R. Comparative study of inactivation and conformational change of lysozyme induced by pulsed electric fields and heat. Eur. Food Res. Technol.228, 47–54. 10.1007/s00217-008-0905-z (2008).
Urabe, G. et al. 1.2 MV/cm pulsed electric fields promote transthyretin aggregate degradation. Sci. Rep.10, 12003 (2020). PubMed PMC
Zhao, W., Yang, R., Lu, R., Tang, Y. & Zhang, W. Investigation of the mechanisms of pulsed electric fields on inactivation of enzyme: Lysozyme. J. Agric. Food Chem.55, 9850–9858. 10.1021/jf072186s (2007). PubMed
Zhao, W. et al. Oxidation of oleic acid under pulsed electric field processing. Food Res. Int.44, 1463–1467 (2011).
Zhao, W. & Yang, R. Pulsed electric field induced aggregation of food proteins: Ovalbumin and bovine serum albumin. Food Bioprocess Technol.5, 1706–1714. 10.1007/s11947-010-0464-8 (2012).
Yogesh, K. Pulsed electric field processing of egg products: A review. J. Food Sci. Technol.53, 934–945 (2016). PubMed PMC
Gabriel, B. & Teissie, J. Generation of reactive-oxygen species induced by electropermeabilization of Chinese hamster ovary cells and their consequence on cell viability. Eur. J. Biochem.223, 25–33. 10.1111/j.1432-1033.1994.tb18962.x/full (1994). PubMed
Maccarrone, M., Rosato, N. & Agro, A. F. Electroporation enhances cell membrane peroxidation and luminescence. Biochem. Biophys. Res. Commun.206, 238–245 (1995). PubMed
Maccarrone, M., Fantini, C., Agrò, A. F. & Rosato, N. Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation. Biochim. Biophys. Acta (BBA)-Biomembr.1414, 43–50 (1998). PubMed
Pakhomova, O. N. et al. Oxidative effects of nanosecond pulsed electric field exposure in cells and cell-free media. Arch. Biochem. Biophys.527, 55–64 (2012). PubMed PMC
Zhang, Y. et al. Nanosecond pulsed electric fields promoting the proliferation of porcine iliac endothelial cells: An in vitro study. PLOS ONE13, e0196688 (2018). PubMed PMC
Szlasa, W. et al. Oxidative effects during irreversible electroporation of melanoma cells–in vitro study. Molecules26, 154 (2021). PubMed PMC
Tivig, I., Moisescu, M. G. & Savopol, T. Changes in the packing of bilayer lipids triggered by electroporation: real-time measurements on cells in suspension. Bioelectrochemistry138, 107689 (2021). PubMed
Wu, L., Zhao, W., Yang, R. & Chen, X. Effects of pulsed electric fields processing on stability of egg white proteins. J. Food Eng.139, 13–18 (2014).
Vahalová, P. et al. Biochemiluminescence sensing of protein oxidation by reactive oxygen species generated by pulsed electric field. Sens. Actuators B Chem.385, 133676. 10.1016/j.snb.2023.133676 (2023).
Peters, T. Jr. All About Albumin: Biochemistry, Genetics, and Medical Applications (Academic press, 1995).
Masuoka, J. & Saltman, P. Zinc(II) and copper(II) binding to serum albumin. A comparative study of dog, bovine, and human albumin. J. Biol. Chem.269, 25557–25561 (1994). PubMed
Zhang, Y. & Wilcox, D. E. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. J. Biol. Inorg. Chem.7, 327–337. 10.1007/s00775-001-0302-6 (2002). PubMed
Majorek, K. A. et al. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol.52, 174–182 (2012). PubMed PMC
Topală, T., Bodoki, A., Oprean, L. & Oprean, R. Bovine serum albumin interactions with metal complexes. Med. Pharm. Rep.87, 215–219 (2014). PubMed PMC
Xu, X., Zhang, L., Shen, D., Wu, H. & Liu, Q. Oxygen-dependent oxidation of Fe(II) to Fe(III) and interaction of Fe(III) with bovine serum albumin, leading to a hysteretic effect on the fluorescence of bovine serum albumin. J. Fluoresc.18, 193–201. 10.1007/s10895-007-0263-4 (2008). PubMed
Regev, O., Khalfin, R., Zussman, E. & Cohen, Y. About the albumin structure in solution and related electro-spinnability issues. Int. J. Biol. Macromol.47, 261–265 (2010). PubMed
Gaigalas, A. K., Hubbard, J. B., McCurley, M. & Woo, S. Diffuslon of bovine serum albumin in aqueous solutions. J. Phys. Chem.96(5), 2355–2359 (1991).
Miller, J. F. Determination of protein charge in aqueous solution using electrophoretic light scattering: A critical investigation of the theoretical fundamentals and experimental methodologies. Langmuir36, 8641–8654. 10.1021/acs.langmuir.0c01694 (2020). PubMed
Pospíšil, P., Prasad, A. & Rác, M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: Role of reactive oxygen species. Biomolecules9, 258 (2019). PubMed PMC
Khabiri, F. et al. Non-invasive monitoring of oxidative skin stress by ultraweak photon emission (UPE)-measurement I mechanisms of UPE of biological materials.. Skin Res. Technol.14, 103–111 (2008). PubMed
Carugo, O. Amino acid composition and protein dimension. Protein Sci.17, 2187–2191. 10.1110/ps.037762.108 (2008). PubMed PMC
Hawkins, C. L. & Davies, M. J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem.294, 19683–19708 (2019). PubMed PMC
Burns, J. M. et al. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat. Sci.74, 683–734. 10.1007/s00027-012-0251-x (2012).
Davies, M. J. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods109, 21–30 (2016). PubMed
Yuasa, M. & Oyaizu, K. Electrochemical detection and sensing of reactive oxygen species. Curr. Org. Chem.9, 1685–1697 (2005).
Deshpande, A. S., Muraoka, W. & Andreescu, S. Electrochemical sensors for oxidative stress monitoring. Curr. Opin. Electrochem.29, 100809 (2021).
Burgos, R. C. R. et al. Tracking biochemical changes correlated with ultra-weak photon emission using metabolomics. J. Photochem. Photobiol. B Biol.163, 237–245 (2016). PubMed
Rogowska-Wrzesinska, A., Wojdyla, K., Nedić, O., Baron, C. P. & Griffiths, H. R. Analysis of protein carbonylation – Pitfalls and promise in commonly used methods. Free Radic. Res.48, 1145–1162 (2014). PubMed
Rudyk, O. & Eaton, P. Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol.2, 803–813 (2014). PubMed PMC
Taroncher, M., Rodríguez-Carrasco, Y., Barba, F. J. & Ruiz, M.-J. Enhancement of the antioxidant effect of natural products on the proliferation of caco-2 cells produced by fish protein hydrolysates and collagen. Int. J. Mol. Sci.24, 6871 (2023). PubMed PMC
Martí-Quijal, F. J., Barba, F. J. & Ramon-Mascarell, F. Effect of pulsed electric fields on the recovery of antioxidant protein extracts from fish side streams. Biol. Life Sci. Forum6, 18 (2021).
Niethammer, P., Grabher, C., Look, A. T. & Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature459, 996–999 (2009). PubMed PMC
Alfonso-Prieto, M., Biarnés, X., Vidossich, P. & Rovira, C. The molecular mechanism of the catalase reaction. J. Am. Chem. Soc.131, 11751–11761. 10.1021/ja9018572 (2009). PubMed
Sheng, Y. et al. Superoxide dismutases and superoxide reductases. Chem. Rev.114, 3854–3918. 10.1021/cr4005296 (2014). PubMed PMC
Busher, J. T. Serum albumin and globulin, in (eds Walker, H. K., Hall, W. D. & Hurst, J. W.) Clinical Methods: The History, Physical, and Laboratory Examinations (Butterworths, 1990), 3rd edn. http://www.ncbi.nlm.nih.gov/books/NBK204/ PubMed
Roodenburg, B., Morren, J., Berg, H. I. & de Haan, S. W. Metal release in a stainless steel pulsed electric field (PEF) system. Innov. Food Sci. Emerg. Technol.6, 327–336 (2005).
Pataro, G., Falcone, M., Donsì, G. & Ferrari, G. Metal release from stainless steel electrodes of a PEF treatment chamber: Effects of electrical parameters and food composition. Innov. Food Sci. Emerg. Technol.21, 58–65 (2014).
Davies, M. J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun.305, 761–770 (2003). PubMed
Sharma, V. K. & Graham, N. J. Oxidation of amino acids, peptides and proteins by ozone: A review. Ozone Sci. Eng.32, 81–90. 10.1080/01919510903510507 (2010).
Choe, E. & Min, D. B. Chemistry and reactions of reactive oxygen species in foods. J. Food Sci.70, R142–R159. 10.1111/j.1365-2621.2005.tb08329.x (2005). PubMed
Guionet, A. et al. Pulsed electric fields act on tryptophan to inactivate α-amylase. J. Electrostat.112, 103597 (2021).
Lu, X., Yim, W.-L., Suryanto, B. H. R. & Zhao, C. Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J. Am. Chem. Soc.137, 2901–2907. 10.1021/ja509879r (2015). PubMed
Ivanova, I. P. et al. Mechanism of chemiluminescence in Fenton reaction. J. Biophys. Chem.03, 88–100. 10.4236/jbpc.2012.31011 (2012).
Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci.20, 2407 (2019). PubMed PMC
Ross, F. & Ross, A. B. Selected Specific Rates of Reactions of Transients From Water in Aqueous Solution. III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions. Tech. Rep. NSRDS-NBS-59, Notre Dame Univ., IN (USA). Radiation Lab. (1977). https://www.osti.gov/biblio/6635906
Schürmann, A., Luerßen, B., Mollenhauer, D., Janek, J. & Schröder, D. Singlet oxygen in electrochemical cells: A critical review of literature and theory. Chem. Rev.121, 12445–12464. 10.1021/acs.chemrev.1c00139 (2021). PubMed
Adam, W., Kazakov, D. V. & Kazakov, V. P. Singlet-oxygen chemiluminescence in peroxide reactions. Chem. Rev.105, 3371–3387. 10.1021/cr0300035 (2005). PubMed
Katsounaros, I. et al. Hydrogen peroxide electrochemistry on platinum: towards Tnderstanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys.14, 7384 (2012). PubMed
Koppenol, W. The Haber-Weiss cycle - 70 years later. Redox Rep.6, 229–234 (2001). PubMed
Axelsson, I. Characterization of proteins and other macromolecules by agarose gel chromatography. J. Chromatogr. A152, 21–32 (1978).
Permentier, H. P. & Bruins, A. P. Electrochemical oxidation and cleavage of proteins with on-line mass spectrometric detection: Development of an instrumental alternative to enzymatic protein digestion. J. Am. Soc. Mass Spectrom.15, 1707–1716. 10.1016/j.jasms.2004.09.003 (2004). PubMed
Neta, P., Huie, R. E. & Ross, A. B. Rate Constants for Reactions of Peroxyl Radicals in Fluid Solutions. J. Phys. Chem. Ref. Data19, 413–513 (1990).
Vacher, M. et al. Chemi- and bioluminescence of cyclic peroxides. Chem. Rev.118, 6927–6974. 10.1021/acs.chemrev.7b00649 (2018). PubMed
Pathak, V., Prasad, A. & Pospíšil, P. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II. PLoS ONE12, e0181732. 10.1371/journal.pone.0181732 (2017). PubMed PMC
Sun, S., Sheth, S. & Song, Q. Electrogenerated singlet oxygen chemiluminescence during in situ transformation of nanostructured brushite to hydroxyapatite on Nafion film. Electrochim. Acta332, 135477 (2020).
Liu, F., Wang, W., Wang, S., Zheng, W. & Wang, Y. Diagnosis of OH radical by optical emission spectroscopy in a wire-plate bi-directional pulsed corona discharge. J. Electrost.65, 445–451 (2007).
Andrés, C. M. C. et al. Superoxide anion chemistry-its role at the core of the innate immunity. Int. J. Mol. Sci.24, 1841 (2023). PubMed PMC
Bielski, B. H. J., Cabelli, D. E., Arudi, R. L. & Ross, A. B. Reactivity of HO2O−2 radicals in aqueous solution. J. Phys. Chem. Ref. Data14, 1041–1100. 10.1063/1.555739 (1985).
Cao, W. et al. Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy. J. Nanobiotechnol.19, 325 (2021). PubMed PMC
Alhazmi, H. A. et al. Spectroscopic characterization of the interactions of bovine serum albumin with medicinally important metal ions: platinum (IV), iridium (III) and iron (II). Acta Biochim. Polon.68, 99–107 (2021). PubMed
Bal, W. et al. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta BBA General Subj.1830, 5444–5455 (2013). PubMed
Loo, A. E. K., Ho, R. & Halliwell, B. Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model. Free Radic. Biol. Med.51, 884–892 (2011). PubMed
Boesten, D. M. P. H. J. et al. Accelerated aging during chronic oxidative stress: A role for PARP-1. Oxid. Med. Cell. Longev.2013, e680414 (2013). PubMed PMC
Lin, S.-S. & Gurol, M. D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism, and implications. Environ. Sci. Technol.32, 1417–1423. 10.1021/es970648k (1998).
Masuda, T., Nakano, S. & Kondo, M. Rate constants for the reactions of OH radicals with the enzyme proteins as determined by the p-nitrosodimethylaniline method. J. Radiat. Res.14, 339–345 (1973). PubMed
Xu, G. & Chance, M. R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev.107, 3514–3543. 10.1021/cr0682047 (2007). PubMed
Spotheim-Maurizot, M. & Davídková, M. Radiation damage to DNA-protein complexes. J. Phys. Conf. Ser.261, 012010. 10.1088/1742-6596/261/1/012010 (2011). PubMed
Guedes, S., Vitorino, R., Domingues, R., Amado, F. & Domingues, P. Oxidation of bovine serum albumin: Identification of oxidation products and structural modifications. Rapid Commun. Mass Spectrom.23, 2307–2315 (2009). PubMed
Kuznetsova, I. M., Sulatskaya, A. I., Povarova, O. I. & Turoverov, K. K. Reevaluation of ANS binding to human and bovine serum albumins: Key role of equilibrium microdialysis in ligand – receptor binding characterization. PLoS ONE7, e40845. 10.1371/journal.pone.0040845 (2012). PubMed PMC
Borzova, V. A. et al. Kinetics of thermal denaturation and aggregation of bovine serum albumin. PLoS ONE11, e0153495. 10.1371/journal.pone.0153495 (2016). PubMed PMC