Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31873109
PubMed Central
PMC6928163
DOI
10.1038/s41598-019-56052-3
PII: 10.1038/s41598-019-56052-3
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- elektřina * MeSH
- kineziny chemie metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- simulace molekulární dynamiky * MeSH
- tubulin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kineziny MeSH
- tubulin MeSH
Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.
Zobrazit více v PubMed
Yadav V, Duan W, Butler PJ, Sen A. Anatomy of Nanoscale Propulsion. Annual Review of Biophysics. 2015;44:77–100. doi: 10.1146/annurev-biophys-060414-034216. PubMed DOI
Yasuda R, Noji H, Kinosita K, Yoshida M. F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120 Steps. Cell. 1998;93:1117–1124. doi: 10.1016/S0092-8674(00)81456-7. PubMed DOI
Dennis JR, Howard J, Vogel V. Molecular shuttles: directed motion of microtubules along nanoscale kinesin tracks. Nanotechnology. 1999;10:232–236. doi: 10.1088/0957-4484/10/3/302. DOI
Schmidt C, Vogel V. Molecular shuttles powered by motor proteins: loading and unloading stations for nanocargo integrated into one device. Lab on a Chip. 2010;10:2195. doi: 10.1039/c005241h. PubMed DOI
Fischer T, Agarwal A, Hess H. A smart dust biosensor powered by kinesin motors. Nature Nanotechnology. 2009;4:162–166. doi: 10.1038/nnano.2008.393. PubMed DOI
Nicolau DV, et al. Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proceedings of the National Academy of Sciences. 2016;113:2591–2596. doi: 10.1073/pnas.1510825113. PubMed DOI PMC
Gennerich A, Vale RD. Walking the walk: how kinesin and dynein coordinate their steps. Current Opinion in Cell Biology. 2009;21:59–67. doi: 10.1016/j.ceb.2008.12.002. PubMed DOI PMC
Ray S. Kinesin follows the microtubule’s protofilament axis. The Journal of Cell Biology. 1993;121:1083–1093. doi: 10.1083/jcb.121.5.1083. PubMed DOI PMC
Nitzsche B, Ruhnow F, Diez S. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nature Nanotechnology. 2008;3:552–556. doi: 10.1038/nnano.2008.216. PubMed DOI
Svoboda K, Block SM. Force and velocity measured for single kinesin molecules. Cell. 1994;77:773–784. doi: 10.1016/0092-8674(94)90060-4. PubMed DOI
Tsiavaliaris G, Fujita-Becker S, Manstein DJ. Molecular engineering of a backwards-moving myosin motor. Nature. 2004;427:558–561. doi: 10.1038/nature02303. PubMed DOI
Schindler TD, Chen L, Lebel P, Nakamura M, Bryant Z. Engineering myosins for long-range transport on actin filaments. Nature Nanotechnology. 2014;9:33–38. doi: 10.1038/nnano.2013.229. PubMed DOI PMC
Wollman AJM, Sanchez-Cano C, Carstairs HMJ, Cross RA, Turberfield AJ. Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nature Nanotechnology. 2014;9:44–47. doi: 10.1038/nnano.2013.230. PubMed DOI PMC
Chen L, Nakamura M, Schindler TD, Parker D, Bryant Z. Engineering controllable bidirectional molecular motors based on myosin. Nature Nanotechnology. 2012;7:252–256. doi: 10.1038/nnano.2012.19. PubMed DOI PMC
Nakamura M, et al. Remote control of myosin and kinesin motors using light-activated gearshifting. Nature Nanotechnology. 2014;9:693–697. doi: 10.1038/nnano.2014.147. PubMed DOI PMC
Ciudad A, Sancho JM, Tsironis GP. Kinesin as an Electrostatic Machine. Journal of Biological Physics. 2007;32:455–463. doi: 10.1007/s10867-006-9028-6. PubMed DOI PMC
Grant BJ, et al. Electrostatically Biased Binding of Kinesin to Microtubules. PLoS Biology. 2011;9:e1001207. doi: 10.1371/journal.pbio.1001207. PubMed DOI PMC
Li L, et al. Forces and Disease: Electrostatic force differences caused by mutations in kinesin motor domains can distinguish between disease-causing and non-disease-causing mutations. Scientific Reports. 2017;7:8237. doi: 10.1038/s41598-017-08419-7. PubMed DOI PMC
English NJ, Waldron CJ. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys. Chem. Chem. Phys. 2015;17:12407–12440. doi: 10.1039/C5CP00629E. PubMed DOI
Marracino P, et al. Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Scientific Reports. 2019;9:10477. doi: 10.1038/s41598-019-46636-4. PubMed DOI PMC
della Valle E, Marracino P, Pakhomova O, Liberti M, Apollonio F. Nanosecond pulsed electric signals can affect electrostatic environment of proteins below the threshold of conformational effects: The case study of SOD1 with a molecular simulation study. PLOS ONE. 2019;14:e0221685. doi: 10.1371/journal.pone.0221685. PubMed DOI PMC
Timmons JJ, Preto J, Tuszynski JA, Wong ET. Tubulin’s response to external electric fields by molecular dynamics simulations. PLOS ONE. 2018;13:e0202141. doi: 10.1371/journal.pone.0202141. PubMed DOI PMC
Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C. Controlling Protein Orientation in Vacuum Using Electric Fields. The Journal of Physical Chemistry Letters. 2017;8:4540–4544. doi: 10.1021/acs.jpclett.7b02005. PubMed DOI
Xu D, Phillips JC, Schulten K. Protein response to external electric fields: relaxation, hysteresis, and echo. The Journal of Physical Chemistry. 1996;100:12108–12121. doi: 10.1021/jp960076a. DOI
Budi A, Legge FS, Treutlein H, Yarovsky I. Electric Field Effects on Insulin Chain-B Conformation. The Journal of Physical Chemistry B. 2005;109:22641–22648. doi: 10.1021/jp052742q. PubMed DOI
Budi A, Legge FS, Treutlein H, Yarovsky I. Effect of Frequency on Insulin Response to Electric Field Stress. The Journal of Physical Chemistry B. 2007;111:5748–5756. doi: 10.1021/jp067248g. PubMed DOI
Wang X, Li Y, He X, Chen S, Zhang JZH. Effect of Strong Electric Field on the Conformational Integrity of Insulin. The Journal of Physical Chemistry A. 2014;118:8942–8952. doi: 10.1021/jp501051r. PubMed DOI
English NJ, Mooney DA. Denaturation of hen egg white lysozyme in electromagnetic fields: A molecular dynamics study. The Journal of Chemical Physics. 2007;126:091105. doi: 10.1063/1.2515315. PubMed DOI
English NJ, Solomentsev GY, O’Brien P. Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme. The Journal of Chemical Physics. 2009;131:035106. doi: 10.1063/1.3184794. PubMed DOI
Solomentsev GY, English NJ, Mooney DA. Hydrogen bond perturbation in hen egg white lysozyme by external electromagnetic fields: A nonequilibrium molecular dynamics study. The Journal of Chemical Physics. 2010;133:235102. doi: 10.1063/1.3518975. PubMed DOI
Todorova N, Bentvelzen A, English NJ, Yarovsky I. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides. The Journal of Chemical Physics. 2016;144:085101. doi: 10.1063/1.4941108. PubMed DOI
Toschi F, Lugli F, Biscarini F, Zerbetto F. Effects of Electric Field Stress on a β-Amyloid Peptide. The Journal of Physical Chemistry B. 2009;113:369–376. doi: 10.1021/jp807896g. PubMed DOI
Lugli F, Toschi F, Biscarini F, Zerbetto F. Electric Field Effects on Short Fibrils of A β Amyloid Peptides. Journal of Chemical Theory and Computation. 2010;6:3516–3526. doi: 10.1021/ct1001335. PubMed DOI
Singh A, Orsat V, Raghavan V. Soybean Hydrophobic Protein Response to External Electric Field: A Molecular Modeling Approach. Biomolecules. 2013;3:168–179. doi: 10.3390/biom3010168. PubMed DOI PMC
Marracino P, Apollonio F, Liberti M, d’Inzeo G, Amadei A. Effect of High Exogenous Electric Pulses on Protein Conformation: Myoglobin as a Case Study. The Journal of Physical Chemistry B. 2013;117:2273–2279. doi: 10.1021/jp309857b. PubMed DOI
Marracino, P. Technology of High-Intensity Electric-Field Pulses: A Way to Control Protein Unfolding. Journal of Physical Chemistry & Biophysics03 (2013).
Ojeda-May P, Garcia ME. Electric Field-Driven Disruption of a Native β-Sheet Protein Conformation and Generation of a Helix-Structure. Biophysical Journal. 2010;99:595–599. doi: 10.1016/j.bpj.2010.04.040. PubMed DOI PMC
Astrakas L, Gousias C, Tzaphlidou M. Electric field effects on chignolin conformation. Journal of Applied Physics. 2011;109:094702. doi: 10.1063/1.3585867. DOI
Astrakas LG, Gousias C, Tzaphlidou M. Structural destabilization of chignolin under the influence of oscillating electric fields. Journal of Applied Physics. 2012;111:074702. doi: 10.1063/1.3699389. DOI
Bernardi M, et al. Human aquaporin 4 gating dynamics under axially oriented electric-field impulses: A non-equilibrium molecular-dynamics study. The Journal of Chemical Physics. 2018;149:245102. doi: 10.1063/1.5044665. PubMed DOI
Marracino P, et al. Transprotein-Electropore Characterization: A Molecular Dynamics Investigation on Human AQP4. ACS Omega. 2018;3:15361–15369. doi: 10.1021/acsomega.8b02230. PubMed DOI PMC
Marracino P, et al. Human Aquaporin 4 Gating Dynamics under Perpendicularly-Oriented Electric-Field Impulses: A Molecular Dynamics Study. International Journal of Molecular Sciences. 2016;17:1133. doi: 10.3390/ijms17071133. PubMed DOI PMC
Reale R, et al. Human aquaporin 4 gating dynamics under and after nanosecond-scale static and alternating electric-field impulses: A molecular dynamics study of field effects and relaxation. The Journal of Chemical Physics. 2013;139:205101. doi: 10.1063/1.4832383. PubMed DOI
Chafai DE, et al. Reversible and Irreversible Modulation of Tubulin Self-Assembly by Intense Nanosecond Pulsed Electric Fields. Advanced Materials. 2019;31:1903636. doi: 10.1002/adma.201903636. PubMed DOI
Hekstra DR, et al. Electric-field-stimulated protein mechanics. Nature. 2016;540:400–405. doi: 10.1038/nature20571. PubMed DOI PMC
Chakraborty S, Zheng W. Decrypting the Structural, Dynamic, and Energetic Basis of a Monomeric Kinesin Interacting with a Tubulin Dimer in Three ATPase States by All-Atom Molecular Dynamics Simulation. Biochemistry. 2015;54:859–869. doi: 10.1021/bi501056h. PubMed DOI
Hancock WO. The Kinesin-1 Chemomechanical Cycle: Stepping Toward a Consensus. Biophysical Journal. 2016;110:1216–1225. doi: 10.1016/j.bpj.2016.02.025. PubMed DOI PMC
Yildiz A, Tomishige M, Gennerich A, Vale RD. Intramolecular Strain Coordinates Kinesin Stepping Behavior along Microtubules. Cell. 2008;134:1030–1041. doi: 10.1016/j.cell.2008.07.018. PubMed DOI PMC
Hess H, Howard J, Vogel V. A Piconewton Forcemeter Assembled from Microtubules and Kinesins. Nano Letters. 2002;2:1113–1115. doi: 10.1021/nl025724i. DOI
Uemura S, Ishiwata S. Loading direction regulates the affinity of ADP for kinesin. Nature Structural & Molecular Biology. 2003;10:308–311. doi: 10.1038/nsb911. PubMed DOI
Leitner, D. M. & Straub, J. E. (eds.) Proteins: energy, heat and signal flow. Computation in chemistry, oCLC: ocn428770796 (CRC Press, Boca Raton, 2010).
Jing Zhifeng, Liu Chengwen, Cheng Sara Y., Qi Rui, Walker Brandon D., Piquemal Jean-Philip, Ren Pengyu. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annual Review of Biophysics. 2019;48(1):371–394. doi: 10.1146/annurev-biophys-070317-033349. PubMed DOI PMC
Apollonio F, et al. Mixed Quantum-Classical Methods for Molecular Simulations of Biochemical Reactions With Microwave Fields: The Case Study of Myoglobin. IEEE Transactions on Microwave Theory and Techniques. 2008;56:2511–2519. doi: 10.1109/TMTT.2008.2005890. DOI
Senn HM, Thiel W. QM/MM Methods for Biomolecular Systems. Angewandte Chemie International Edition. 2009;48:1198–1229. doi: 10.1002/anie.200802019. PubMed DOI
van Mourik T, Bühl M, Gaigeot M-P. Density functional theory across chemistry, physics and biology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014;372:20120488. doi: 10.1098/rsta.2012.0488. PubMed DOI PMC
Silva JR, et al. A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proceedings of the National Academy of Sciences. 2009;106:11102–11106. doi: 10.1073/pnas.0904505106. PubMed DOI PMC
Stone JE, et al. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing. Parallel Computing. 2016;55:17–27. doi: 10.1016/j.parco.2015.10.015. PubMed DOI PMC
Zhang Z, Goldtzvik Y, Thirumalai D. Parsing the roles of neck-linker docking and tethered head diffusion in the stepping dynamics of kinesin. Proceedings of the National Academy of Sciences. 2017;114:E9838–E9845. doi: 10.1073/pnas.1706014114. PubMed DOI PMC
Ayoub AT, Klobukowski M, Tuszynski J. Similarity-based virtual screening for microtubule stabilizers reveals novel antimitotic scaffold. Journal of Molecular Graphics and Modelling. 2013;44:188–196. doi: 10.1016/j.jmgm.2013.05.008. PubMed DOI
Verbrugge S, Lansky Z, Peterman EJG. Kinesin’s step dissected with single-motor FRET. Proceedings of the National Academy of Sciences. 2009;106:17741–17746. doi: 10.1073/pnas.0905177106. PubMed DOI PMC
Carr L, et al. Calcium-independent disruption of microtubule dynamics by nanosecond pulsed electric fields in U87 human glioblastoma cells. Scientific Reports. 2017;7:41267. doi: 10.1038/srep41267. PubMed DOI PMC
Dalmay C, et al. Design and realization of a microfluidic device devoted to the application of ultra-short pulses of electrical field to living cells. Sensors and Actuators B: Chemical. 2011;160:1573–1580. doi: 10.1016/j.snb.2011.09.009. DOI
Siahaan V, et al. Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nature Cell Biology. 2019;21:1086–1092. doi: 10.1038/s41556-019-0374-6. PubMed DOI
Mickolajczyk KJ, et al. Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle. Proceedings of the National Academy of Sciences. 2015;112:E7186–E7193. doi: 10.1073/pnas.1517638112. PubMed DOI PMC
Chopinet L, Rols M-P. Nanosecond electric pulses: A mini-review of the present state of the art. Bioelectrochemistry. 2015;103:2–6. doi: 10.1016/j.bioelechem.2014.07.008. PubMed DOI
Casciola M, Xiao S, Pakhomov AG. Damage-free peripheral nerve stimulation by 12-ns pulsed electric field. Scientific Reports. 2017;7:10453. doi: 10.1038/s41598-017-10282-5. PubMed DOI PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity-rescaling. The Journal of Chemical Physics126, 014101 ArXiv: 0803.4060 (2007). PubMed
Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A. 1985;31:1695–1697. doi: 10.1103/PhysRevA.31.1695. PubMed DOI
Amadei A, Marracino P. Theoretical–computational modelling of the electric field effects on protein unfolding thermodynamics. RSC Adv. 2015;5:96551–96561. doi: 10.1039/C5RA15605J. DOI
Marracino P, Liberti M, d’Inzeo G, Apollonio F. Water response to intense electric fields: A molecular dynamics study: Intense Electric Fields on Ionic Solutions. Bioelectromagnetics. 2015;36:377–385. doi: 10.1002/bem.21916. PubMed DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Berendsen H, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications. 1995;91:43–56. doi: 10.1016/0010-4655(95)00042-E. DOI
Abraham MJ, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
MacKerell AD, et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins†. The Journal of Physical Chemistry B. 1998;102:3586–3616. doi: 10.1021/jp973084f. PubMed DOI
Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry. 2013;34:2135–2145. doi: 10.1002/jcc.23354. PubMed DOI PMC
Van Gunsteren WF, Berendsen HJC. A Leap-frog Algorithm for Stochastic Dynamics. Molecular Simulation. 1988;1:173–185. doi: 10.1080/08927028808080941. DOI
Essmann U, et al. A smooth particle mesh Ewald method. The Journal of Chemical Physics. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Amadei A, Linssen ABM, Berendsen HJC. Essential dynamics of proteins. Proteins: Structure, Function, and Genetics. 1993;17:412–425. doi: 10.1002/prot.340170408. PubMed DOI
Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M. The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of Computational Chemistry. 1995;16:273–284. doi: 10.1002/jcc.540160303. DOI
Molecular dynamics simulation dataset of a kinesin on tubulin heterodimers in electric field
Electro-detachment of kinesin motor domain from microtubule in silico
Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network
Electro-opening of a microtubule lattice in silico
Challenges in coupling atmospheric electricity with biological systems