Electrochemistry in sensing of molecular interactions of proteins and their behavior in an electric field
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37847341
PubMed Central
PMC10582152
DOI
10.1007/s00604-023-05999-2
PII: 10.1007/s00604-023-05999-2
Knihovny.cz E-zdroje
- Klíčová slova
- Electrode, Microdevice, Peptide, Protein, Sensor,
- MeSH
- elektrochemické techniky * metody MeSH
- elektrochemie MeSH
- oxidace-redukce MeSH
- proteiny * MeSH
- transport elektronů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteiny * MeSH
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
Zobrazit více v PubMed
Curry S. Structural biology: a century-long journey into an unseen world. Interdiscip Sci Rev. 2015;40(3):308–328. doi: 10.1179/0308018815z.000000000120. PubMed DOI PMC
Koryta J. The origin of polarography. J Electroanal Chem. 1990;296(2):293–297. doi: 10.1016/0022-0728(90)87254-H. DOI
Heyrovsky M. Early polarographic studies on proteins. Electroanalysis. 2004;16(13-14):1067–1073. doi: 10.1002/elan.200403008. DOI
Zuman P, Palecek E. Polarography of proteins: a history. In: Palecek E, Scheller F, Wang J, editors. Perspectives in Bioanalysis. 1: Elsevier; 2005. pp. 755–771.
Eddowes MJ, Hill HAO. Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J Chem Soc, Chem Commun. 1977;21:771b–7712. doi: 10.1039/C3977000771B. DOI
Blanford CF. The birth of protein electrochemistry. Chem Commun. 2013;49(95):11130–11132. doi: 10.1039/C3CC46060F. PubMed DOI
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, et al. Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem Rev. 2014;114(8):4366–4469. doi: 10.1021/cr400479b. PubMed DOI PMC
Sarkar A, Chattopadhyay S, Mukherjee M, Ghosh Dey S, Dey A. Assembly of redox active metallo-enzymes and metallo-peptides on electrodes: abiological constructs to probe natural processes. Curr Opin Chem Biol. 2022;68:102142. doi: 10.1016/j.cbpa.2022.102142. PubMed DOI
Yates NDJ, Fascione MA, Parkin A. Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem Eur J. 2018;24:12164–12182. doi: 10.1002/chem.201800750. PubMed DOI PMC
Laftsoglou T, Jeuken LJC. Supramolecular electrode assemblies for bioelectrochemistry. Chem Commun. 2017;53(27):3801–3809. doi: 10.1039/c7cc01154g. PubMed DOI PMC
Vacek J, Zatloukalova M, Novak D. Electrochemistry of membrane proteins and protein–lipid assemblies. Curr Opin Electrochem. 2018;12:73–80. doi: 10.1016/j.coelec.2018.04.012. DOI
Vacek J, Hrbac J. Sensors and microarrays in protein biomarker monitoring: an electrochemical perspective spots. Bioanalysis. 2020;12(18):1337–1345. doi: 10.4155/bio-2020-0166. PubMed DOI
Van Gool A, Corrales F, Colovic M, Krstic D, Oliver-Martos B, Martínez-Cáceres E, et al. Analytical techniques for multiplex analysis of protein biomarkers. Exp Rev Proteom. 2020;17(4):257–273. doi: 10.1080/14789450.2020.1763174. PubMed DOI
Blumberger J. Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem Rev. 2015;115:11191–11238. doi: 10.1021/acs.chemrev.5b00298. PubMed DOI
Sęk S, Vacek J, Dorcak V. Electrochemistry of peptides. Curr Opin. Electrochem. 2019;14:166–172. doi: 10.1016/j.coelec.2019.03.002. DOI
Suprun EV. Direct electrochemistry of proteins and nucleic acids: the focus on 3D structure. Electrochem Commun. 2021;125:106983. doi: 10.1016/j.elecom.2021.106983. DOI
Palecek E, Heyrovsky M, Dorcak V. J. Heyrovský’s oscillographic polarography. Roots of present chronopotentiometric analysis of biomacromolecules. Electroanalysis. 2018;30(7):1259–1270. doi: 10.1002/elan.201800109. DOI
Palecek E, Tkac J, Bartosik M, Bertok T, Ostatna V, Palecek J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev. 2015;115(5):2045–2108. doi: 10.1021/cr500279h. PubMed DOI PMC
Li J, Hu R, Li X, Tong X, Yu D, Zhao Q. Tiny protein detection using pressure through solid-state nanopores. Electrophoresis. 2017;38(8):1130–1138. doi: 10.1002/elps.201600410. PubMed DOI
Liu W, Yang CN, Yang ZL, Yu RJ, Long YT, Ying YL (2023) Observing confined local oxygen-induced reversible thiol/disulfide cycle with a protein nanopore. Angew Chem Int Ed 62(27). 10.1002/anie.202304023 PubMed
Luan B, Stolovitzky G, Martyna G. Slowing and controlling the translocation of DNA in a solid-state nanopore. Nanoscale. 2012;4(4):1068–1077. doi: 10.1039/c1nr11201e. PubMed DOI PMC
Maglia G, Heron AJ, Stoddart D, Japrung D, Bayley H Analysis of single nucleic acid molecules with protein nanopores. Method Enzymol 4752010:591–623. 10.1016/S0076-6879(10)75022-9 PubMed PMC
Havran L, Vacek J, Dorcak V. Free and bound histidine in reactions at mercury electrode. J Electroanal Chem. 2022;916:116336. doi: 10.1016/j.jelechem.2022.116336. DOI
Sumitha MS, Xavier TS. Recent advances in electrochemical biosensors – a brief review. Hybrid Adv. 2023;2:100023. doi: 10.1016/j.hybadv.2023.100023. DOI
Palecek E, Ostatna V. Electroactivity of nonconjugated proteins and peptides. Towards electroanalysis of all proteins. Electroanalysis. 2007;19:2383–2403. doi: 10.1002/elan.200704033|ISSN. DOI
Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. TrAC Trends Anal Chem. 2021;144:116431. doi: 10.1016/j.trac.2021.116431. DOI
Palecek E, Dorcak V. Label-free electrochemical analysis of biomacromolecules. Appl Mater Today. 2017;9:434–450. doi: 10.1016/j.apmt.2017.08.011. DOI
Ramsden JJ. Experimental methods for investigating protein adsorption kinetics at surfaces. Q Rev Biophys. 1994;27(1):41–105. doi: 10.1017/S0033583500002900. PubMed DOI
Randviir EP, Banks CE. A review of electrochemical impedance spectroscopy for bioanalytical sensors. Anal Methods. 2022;14(45):4602–4624. doi: 10.1039/D2AY00970F. PubMed DOI
Arrigan DWM, Hackett MJ, Mancera RL. Electrochemistry of proteins at the interface between two immiscible electrolyte solutions. Curr Opin Electrochem. 2018;12:27–32. doi: 10.1016/j.coelec.2018.07.012. DOI
Suprun EV, Budnikov HC. Bioelectrochemistry as a field of analysis: historical aspects and current status. J Anal Chem. 2022;77(6):643–663. doi: 10.1134/S1061934822060168. DOI
Vargova V, Zivanovic M, Dorcak V, Palecek E, Ostatna V. Catalysis of hydrogen evolution by polylysine, polyarginine and polyhistidine at mercury electrodes. Electroanalysis. 2013;25(9):2130–2135. doi: 10.1002/elan.201300170. DOI
Zivanovic M, Aleksic M, Ostatna V, Doneux T, Palecek E. Polylysine-catalyzed hydrogen evolution at mercury electrodes. Electroanalysis. 2010;22(17-18):2064–2071. doi: 10.1002/elan.201000088. DOI
Dorcak V, Vargova V, Ostatna V, Palecek E. Lysine, arginine, and histidine residues in peptide-catalyzed hydrogen evolution at mercury electrodes. Electroanalysis. 2015;27(4):910–916. doi: 10.1002/elan.201400644. DOI
Doneux T, Ostatna V, Palecek E. On the mechanism of hydrogen evolution catalysis by proteins: a case study with bovine serum albumin. Electrochim Acta. 2012;56(25):9337–9343. doi: 10.1016/j.electacta.2011.08.017. DOI
Ostatna V, Dogan B, Uslu B, Ozkan S, Palecek E. Native and denatured bovine serum albumin. D.c. polarography, stripping voltammetry and constant current chronopotentiometry. J Electroanal Chem. 2006;593:172–178. doi: 10.1016/j.jelechem.2006.03.037. DOI
Cernocka H, Ostatna V, Palecek E. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density. Electrochim Acta. 2015;174:356–360. doi: 10.1016/j.electacta.2015.06.009. DOI
Ostatna V, West RM. Effects of ex situ chronopotentiometric analysis on stability of bovine serum albumin on mercury electrodes. J Electroanal Chem. 2020;860:113884. doi: 10.1016/j.jelechem.2020.113884. DOI
Cernocka H, Ostatna V, Palecek E. Fast-scan cyclic voltammetry with thiol-modified mercury electrodes distinguishes native from denatured BSA. Electrochem Commun. 2015;61:114–116. doi: 10.1016/j.elecom.2015.10.017. DOI
Palecek E, Ostatna V. Ionic strength-dependent structural transition of proteins at electrode surfaces. Chem Commun. 2009;13:1685–1687. doi: 10.1039/B822274F. PubMed DOI
Ostatna V, Cernocka H, Palecek E. Protein structure-sensitive electrocatalysis at DTT-modified electrodes. J Am Chem Soc. 2010;132(27):9408–9413. doi: 10.1021/ja102427y. PubMed DOI
Ostatna V, Kuralay F, Trnkova L, Palecek E. Constant current chronopotentiometry and voltammetry of native and denatured serum albumin at mercury and carbon electrodes. Electroanalysis. 2008;20:1406–1413. doi: 10.1002/elan.200804206. DOI
Ostatna V, Palecek E. Native, denatured and reduced BSA - enhancement of chronopotentiometric peak H by guanidinium chloride. Electrochim Acta. 2008;53(11):4014–4021. doi: 10.1016/j.electacta.2007.10.035. DOI
Rimankova L, Cernocka H, Tihlarikova E, Nedela V, Ostatna V. Chronopotentiometric sensing of native, oligomeric, denatured and aggregated serum albumin at charged surfaces. Bioelectrochemistry. 2022;145:108100. doi: 10.1016/j.bioelechem.2022.108100. PubMed DOI
Palecek E, Ostatna V, Masarik M, Bertoncini CW, Jovin TM. Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst. 2008;133(1):76–84. doi: 10.1039/b712812f. PubMed DOI
Ostatna V, Kasalova V, Kmetova K, Sedo O. Changes of electrocatalytic response of bovine serum albumin after its methylation and acetylation. J Electroanal Chem. 2018;821:97–103. doi: 10.1016/j.jelechem.2017.11.044. DOI
Izadi N, Cernocka H, Trefulka M, Ostatna V. Influence of protein modification and glycosylation in the catalytic hydrogen evolution reaction of avidin and neutravidin: an electrochemical analysis. ChemPlusChem. 2020;85(6):1347–1353. doi: 10.1002/cplu.202000298. PubMed DOI
Havlikova M, Zatloukalova M, Ulrichova J, Dobes P, Vacek J. Electrocatalytic assay for monitoring methylglyoxal-mediated protein glycation. Anal Chem. 2015;87(3):1757–1763. doi: 10.1021/ac503705d. PubMed DOI
Borsarelli CD, Falomir-Lockhart LJ, Ostatna V, Fauerbach JA, Hsiao HH, Urlaub H, et al. Biophysical properties and cellular toxicity of covalent crosslinked oligomers of alpha-synuclein formed by photoinduced side-chain tyrosyl radicals. Free Radic Biol Med. 2012;53(4):1004–1015. doi: 10.1016/j.freeradbiomed.2012.06.035. PubMed DOI
Vargova V, Gimenez RE, Cernocka H, Trujillo DC, Tulli F, Zanini VIP, et al. Label-free electrochemical detection of singlet oxygen protein damage. Electrochim Acta. 2016;187:662–669. doi: 10.1016/j.electacta.2015.11.104. DOI
Kasalova V, Hrstka R, Hernychova L, Coufalova D, Ostatna V. Chronopotentiometric sensing of anterior gradient 2 protein. Electrochim Acta. 2017;240:250–257. doi: 10.1016/j.electacta.2017.04.090. DOI
Palecek E, Ostatna V, Cernocka H, Joerger AC, Fersht AR. Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. J Am Chem Soc. 2011;133(18):7190–7196. doi: 10.1021/ja201006s. PubMed DOI
Cernocka H, Fojt L, Adamik M, Brazdova M, Palecek E, Ostatna V. Interfacial properties of p53-DNA complexes containing various recognition elements. J Electroanal Chem. 2019;848:113300. doi: 10.1016/j.jelechem.2019.113300. DOI
Palecek E, Cernocka H, Ostatna V, Navratilova L, Brazdova M. Electrochemical sensing of tumor suppressor protein p53–deoxyribonucleic acid complex stability at an electrified interface. Anal Chim Acta. 2014;828:1–8. doi: 10.1016/j.aca.2014.03.029. PubMed DOI
Ostatna V, Kasalova-Vargova V, Kekedy-Nagy L, Cernocka H, Ferapontova EE. Chronopotentiometric sensing of specific interactions between lysozyme and the DNA aptamer. Bioelectrochemistry. 2017;114:42–47. doi: 10.1016/j.bioelechem.2016.12.003. PubMed DOI
Ostatna V, Kasalova V, Sommerova L, Hrstka R. Electrochemical sensing of interaction of anterior gradient-2 protein with peptides at a charged interface. Electrochim Acta. 2018;269:70–75. doi: 10.1016/j.electacta.2018.02.152. DOI
Belicky S, Cernocka H, Bertok T, Holazova A, Reblova K, Palecek E, et al. Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry. 2017;117:89–94. doi: 10.1016/j.bioelechem.2017.06.005. PubMed DOI PMC
Vargova V, Helma R, Palecek E, Ostatna V. Electrochemical sensing of concanavalin A and ovalbumin interaction in solution. Anal Chim Acta. 2016;935:97–103. doi: 10.1016/j.aca.2016.06.055. PubMed DOI
Cernocka H, Vonka P, Kasalova V, Sommerova L, Vandova V, Hrstka R, et al. AGR2-AGR3 hetero-oligomeric complexes: identification and characterization. Bioelectrochemistry. 2021;140:107808. doi: 10.1016/j.bioelechem.2021.107808. PubMed DOI
Ostatna V, Hason S, Kasalova V, Durech M, Hrstka R. Anterior gradient-3 protein-antibody interaction at charged interfaces. Label-free chronopotentiometric sensing. Electrochim Acta. 2019;297:974–979. doi: 10.1016/j.electacta.2018.12.049. DOI
Novak D, Viskupicova J, Zatloukalova M, Heger V, Michalikova S, Majekova M, et al. Electrochemical behavior of sarco/endoplasmic reticulum Ca-ATPase in response to carbonylation processes. J Electroanal Chem. 2018;812:258–264. doi: 10.1016/j.jelechem.2018.01.036. DOI
Svrckova M, Zatloukalova M, Dvorakova P, Coufalova D, Novak D, Hernychova L, et al. Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product. Free Radic Biol Med. 2017;108:146–154. doi: 10.1016/j.freeradbiomed.2017.03.024. PubMed DOI
Vacek J, Zatloukalova M, Geleticova J, Kubala M, Modriansky M, Fekete L, et al. Electrochemical platform for the detection of transmembrane proteins reconstituted into liposomes. Anal Chem. 2016;88(8):4548–4556. doi: 10.1021/acs.analchem.6b00618. PubMed DOI
Vacek J, Zatloukalova M, Havlikova M, Ulrichova J, Kubala M. Changes in the intrinsic electrocatalytic nature of Na+/K+ ATPase reflect structural changes on ATP-binding: electrochemical label-free approach. Electrochem Commun. 2013;27:104–107. doi: 10.1016/j.elecom.2012.11.020. DOI
Zatloukalova M, Nazaruk E, Novak D, Vacek J, Bilewicz R. Lipidic liquid crystalline cubic phases for preparation of ATP-hydrolysing enzyme electrodes. Biosens Bioelectron. 2018;100:437–444. doi: 10.1016/j.bios.2017.09.036. PubMed DOI
Neumann E. Chemical electric-field effects in biological macromolecules. Prog Biophys Mol Biol. 1986;47(3):197–231. doi: 10.1016/0079-6107(86)90014-3. PubMed DOI
Vacek J, Svrckova M, Zatloukalova M, Novak D, Proskova J, Langova K, et al. Electrocatalytic artificial carbonylation assay for observation of human serum albumin inter-individual properties. Anal Biochem. 2018;550:137–143. doi: 10.1016/j.ab.2018.04.025. PubMed DOI
Hernychova L, Alexandri E, Tzakos AG, Zatloukalova M, Primikyri A, Gerothanassis IP, et al. Serum albumin as a primary non-covalent binding protein for nitro-oleic acid. Int J Biol Macromol. 2022;203:116–129. doi: 10.1016/j.ijbiomac.2022.01.050. PubMed DOI
Zatloukalova M, Mojovic M, Pavicevic A, Kabelac M, Freeman BA, Pekarova M, et al. Redox properties and human serum albumin binding of nitro-oleic acid. Redox Biol. 2019;24:101213. doi: 10.1016/j.redox.2019.101213. PubMed DOI PMC
Juskova P, Ostatna V, Palecek E, Foret F. Fabrication and characterization of solid mercury amalgam electrodes for protein analysis. Anal Chem. 2010;82(7):2690–2695. doi: 10.1021/ac902333s. PubMed DOI
Doneux T, Dorcak V, Palecek E. Influence of the interfacial peptide organization on the catalysis of hydrogen evolution. Langmuir. 2010;26(2):1347–1353. doi: 10.1021/la9024603. PubMed DOI
Dorcak V, Palecek E. Catalytic deuterium evolution and H/D exchange in DNA. ChemElectroChem. 2019;6(4):1032–1039. doi: 10.1002/celc.201801214. DOI
Ilimbi D, Buess-Herman C, Doneux T. Chronopotentiometry as a sensitive interfacial characterisation tool for peptide aptamer monolayers. Electroanalysis. 2019;31(10):2041–2047. doi: 10.1002/elan.201900285. DOI
Rimankova L, Hason S, Danhel A, Fojta M, Ostatna V. Catalytic and redox activity of nucleic acids at mercury electrodes: roles of nucleobase residues. J Electroanal Chem. 2020;858:113812. doi: 10.1016/j.jelechem.2019.113812. DOI
Brabec V, Vetterl V, Vrana O. Electroanalysis of biomacromolecules. In: Brabec V, Walz D, Milazzo G, editors. Experimental Techniques in Bioelectrochemistry. Basel: Birghauser Verlag; 1996. p. 287.
Herzog G, Arrigan DW. Electrochemical strategies for the label-free detection of amino acids, peptides and proteins. Analyst. 2007;132(7):615–632. doi: 10.1039/B701472D. PubMed DOI
Baluchova S, Danhel A, Dejmkova H, Ostatna V, Fojta M, Schwarzova-Peckova K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules - a review. Anal Chim Acta. 2019;1077:30–66. doi: 10.1016/j.aca.2019.05.041. PubMed DOI
Ostatna V, Cernocka H, Kurzatkowska K, Palecek E. Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Anal Chim Acta. 2012;735:31–36. doi: 10.1016/j.aca.2012.05.012. PubMed DOI
Enache TA, Oliveira-Brett AM. Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes. Bioelectrochemistry. 2013;89:11–18. doi: 10.1016/j.bioelechem.2012.08.004. PubMed DOI
Ostatna V, Vargova V, Hrstka R, Durech M, Vojtesek B, Palecek E. Effect of His6-tagging of anterior gradient 2 protein on its electro-oxidation. Electrochim Acta. 2014;150:218–222. doi: 10.1016/j.electacta.2014.10.125. DOI
Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E. Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations. Anal Chim Acta. 1996;332(1):49–57. doi: 10.1016/0003-2670(96)00189-4. DOI
Hughes ZE, Walsh TR. What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J Mater Chem B. 2015;3(16):3211–3221. doi: 10.1039/c5tb00004a. PubMed DOI
Oliveira SCB, Santarino IB, Oliveira-Brett AM. Direct electrochemistry of native and denatured anticancer antibody rituximab at a glassy carbon electrode. Electroanalysis. 2013;25(4):1029–1034. doi: 10.1002/elan.201200552. DOI
Fernandes IPG, Oliveira-Brett AM. Calcium-induced calmodulin conformational change. Electrochemical evaluation. Bioelectrochemistry. 2017;113:69–78. doi: 10.1016/j.bioelechem.2016.10.002. PubMed DOI
Topal BD, Özkan SA, Uslu B. Direct electrochemistry of native and denatured alpha-2-Macroglobulin by solid electrodes. J Electroanal Chem. 2014;719:14–18. doi: 10.1016/j.jelechem.2014.02.008. DOI
Lopes P, Xu M, Zhang M, Zhou T, Yang YL, Wang C, et al. Direct electrochemical and AFM detection of amyloid-beta peptide aggregation on basal plane HOPG. Nanoscale. 2014;6(14):7853–7857. doi: 10.1039/c4nr02413c. PubMed DOI
Suprun EV, Khmeleva SA, Radko SP, Archakov AI, Shumyantseva VV. Electrochemical analysis of amyloid-beta domain 1-16 isoforms and their complexes with Zn(II) ions. Electrochim Acta. 2016;187:677–683. doi: 10.1016/j.electacta.2015.11.111. DOI
Vestergaard M, Kerman K, Saito M, Nagatani N, Takamura Y, Tamiya E. A rapid label-free electrochemical detection and kinetic study of Alzheimer’s amyloid beta aggregation. J Am Chem Soc. 2005;127(34):11892–11893. doi: 10.1021/ja052522q. PubMed DOI
Kerman K, Vestergaard M, Chikae M, Yamamura S, Tamiya E. Label-free electrochemical detection of the phosphorylated and non-phosphorylated forms of peptides based on tyrosine oxidation. Electrochem Commun. 2007;9(5):976–980. doi: 10.1016/j.elecom.2006.11.033. DOI
Suprun EV, Zharkova MS, Morozevich GE, Veselovsky AV, Shumyantseva VV, Archakov AI. Analysis of redox activity of proteins on the carbon screen printed electrodes. Electroanalysis. 2013;25(9):2109–2116. doi: 10.1002/elan.201300248. DOI
Novak D, Mojovic M, Pavicevic A, Zatloukalova M, Hernychova L, Bartosik M, et al. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs. Bioelectrochemistry. 2018;119:136–141. doi: 10.1016/j.bioelechem.2017.09.011. PubMed DOI
Alvarez-Dorta D, Thobie-Gautier C, Croyal M, Bouzelha M, Mével M, Deniaud D, et al. Electrochemically promoted tyrosine-click-chemistry for protein labeling. J Am Chem Soc. 2018;140(49):17120–17126. doi: 10.1021/jacs.8b09372. PubMed DOI
Willwacher J, Raj R, Mohammed S, Davis BG. Selective metal-site-guided arylation of proteins. J Am Chem Soc. 2016;138(28):8678–8681. doi: 10.1021/jacs.6b04043. PubMed DOI
Song C, Liu K, Wang Z, Ding B, Wang S, Weng Y, et al. Electrochemical oxidation induced selective tyrosine bioconjugation for the modification of biomolecules. Chem Sci. 2019;10(34):7982–7987. doi: 10.1039/C9SC02218J. PubMed DOI PMC
Sierra T, Crevillen AG, Escarpa A. Derivatization agents for electrochemical detection in amino acid, peptide and protein separations: the hidden electrochemistry? Electrophoresis. 2017;38(21):2695–2703. doi: 10.1002/elps.201700167. PubMed DOI
Li G-D, Krull I, Cohen S. Electrochemical activity of 6-aminoquinolyl urea derivatives of amino acids and peptides. Application to high-performance liquid chromatography with electrochemical detection. J Chromatogr A. 1996;724(1-2):147–157. doi: 10.1016/0021-9673(95)00941-8. PubMed DOI
Pappa-Louisi A, Nikitas P, Agrafiotou P, Papageorgiou A. Optimization of separation and detection of 6-aminoquinolyl derivatives of amino acids by using reversed-phase liquid chromatography with on line UV, fluorescence and electrochemical detection. Anal Chim Acta. 2007;593(1):92–97. doi: 10.1016/j.aca.2007.04.044. PubMed DOI
Rose MJ, Lunte SM, Carlson RG, Stobaugh JF. Hydroquinone-based derivatization reagents for the quantitation of amines using electrochemical detection. Anal Chem. 1999;71(11):2221–2230. doi: 10.1021/ac981236c. PubMed DOI
Rose MJ, Lunte SM, Carlson RG, Stobaugh JF. Amino acid and peptide analysis using derivatization with p-nitrophenol-2, 5-dihydroxyphenylacetate bis-tetrahydropyranyl ether and capillary electrophoresis with electrochemical detection. J Pharm Biomed Anal. 2003;30(6):1851–1859. doi: 10.1016/s0731-7085(02)00528-9. PubMed DOI
Toyama E, Maruyama K, Sugai T, Kondo M, Masaoka S, Saitoh T et al (2019) Electrochemical tryptophan-selective bioconjugation. 10.26434/chemrxiv7795484
Li M, Zhu W, Marken F, James TD. Electrochemical sensing using boronic acids. Chem Commun. 2015;51(78):14562–14573. doi: 10.1039/C5CC04976H. PubMed DOI
Chien HC, Chou TC. A nonenzymatic amperometric method for fructosyl-valine sensing using ferroceneboronic acid. Electroanalysis. 2011;23(2):402–408. doi: 10.1002/elan.201000426. DOI
Xia N, Deng D, Zhang L, Yuan B, Jing M, Du J, et al. Sandwich-type electrochemical biosensor for glycoproteins detection based on dual-amplification of boronic acid-gold nanoparticles and dopamine-gold nanoparticles. Biosens Bioelectron. 2013;43:155–159. doi: 10.1016/j.bios.2012.12.020. PubMed DOI
Billova S, Kizek R, Palecek E. Differential pulse adsorptive stripping voltammetry of osmium-modified peptides. Bioelectrochemistry. 2002;56(1-2):63–66. doi: 10.1016/S1567-5394(02)00008-7. PubMed DOI
Fojta M, Billova S, Havran L, Pivonkova H, Cernocka H, Horakova P, et al. Osmium tetroxide, 2, 2′-bipyridine: electroactive marker for probing accessibility of tryptophan residues in proteins. Anal Chem. 2008;80(12):4598–4605. doi: 10.1021/ac800527u. PubMed DOI
Trefulka M, Dorcak V, Krenkova J, Foret F, Palecek E. Electrochemical analysis of Os(VI)-modified glycoproteins and label-free glycoprotein detection eluted from lectin capillary column. Electrochim Acta. 2017;239:10–15. doi: 10.1016/j.electacta.2017.04.045. DOI
Trefulka M, Palecek E. Direct chemical modification and voltammetric detection of glycans in glycoproteins. Electrochem Commun. 2014;48:52–55. doi: 10.1016/j.elecom.2014.08.011. DOI
Martic S, Labib M, Kraatz H-B. Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations. Analyst. 2011;136(1):107–112. doi: 10.1039/C0AN00438C. PubMed DOI
Ramya M, Senthil Kumar P, Rangasamy G, Umashankar V, Rajesh G, Nirmala K et al (2022) A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. Chemosphere 308: 136416. 10.1016/j.chemosphere.2022.136416 PubMed
Mishra A, Bhatt R, Bajpai J, Bajpai AK. Nanomaterials based biofuel cells: a review. Int J Hydrogen Energy. 2021;46(36):19085–19105. doi: 10.1016/j.ijhydene.2021.03.024. DOI
Smutok O, Katz E (2023) Electroanalytical instrumentation—how it all started: history of electrochemical instrumentation. J Solid State Electrochem. 10.1007/s10008-023-05375-3
Palecek E, Fojta M. Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta. 2007;74(3):276–290. doi: 10.1016/j.talanta.2007.08.020. PubMed DOI
Palecek E, Fojta M, Jelen F. New approaches in the development of DNA sensors: hybridization and electrochemical detection of DNA and RNA at two different surfaces. Bioelectrochemistry. 2002;56:85–90. doi: 10.1016/S1567-5394(02)00025-7. PubMed DOI
Palecek E, Postbieglova I. Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer. J Electroanal Chem. 1986;214(1-2):359–371. doi: 10.1016/0022-0728(86)80108-5. DOI
Palecek E, Kizek R, Havran L, Billova S, Fojta M. Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor. Anal Chim Acta. 2002;469(1):73–83. doi: 10.1016/S0003-2670(01)01605-1. DOI
Wang J, Xu D, Erdem A, Polsky R, Salazar MA. Genomagnetic electrochemical assays of DNA hybridization. Talanta. 2002;56(5):931–938. doi: 10.1016/S0039-9140(01)00653-1. PubMed DOI
Vacek J, Mozga T, Cahova K, Pivonkova H, Fojta M. Electrochemical sensing of chromium-induced DNA damage: DNA strand breakage by intermediates of chromium(VI) electrochemical reduction. Electroanalysis. 2007;19(19-20):2093–2102. doi: 10.1002/elan.200703917. DOI
Masarik M, Cahova K, Kizek R, Palecek E, Fojta M. Label-free voltammetric detection of single-nucleotide mismatches recognized by the protein MutS. Anal Bioanal Chem. 2007;388(1):259–270. doi: 10.1007/s00216-007-1181-7. PubMed DOI
Palecek E, Masarik M, Kizek R, Kuhlmeier D, Hassmann J, Schulein J. Sensitive electrochemical determination of unlabeled mutS protein and detection of point mutations in DNA. Anal Chem. 2004;76(19):5930–5936. doi: 10.1021/ac049474x. PubMed DOI
Kawde AN, Rodriguez MC, Lee TMH, Wang J. Label-free bioelectronic detection of aptamer-protein interactions. Electrochem Commun. 2005;7(5):537–540. doi: 10.1016/j.elecom.2005.03.008. DOI
Matthew JB. Electrostatic effects in proteins. Ann Rev Biophys Biophys Chem. 1985;14(1):387–417. doi: 10.1146/annurev.bb.14.060185.002131. PubMed DOI
Park JW, Rhee YM. Electric field keeps chromophore planar and produces high yield fluorescence in green fluorescent protein. J Am Chem Soc. 2016;138(41):13619–13629. doi: 10.1021/jacs.6b06833. PubMed DOI
Henderson D, Boda D. Insights from theory and simulation on the electrical double layer. Phys Chem Chem Phys. 2009;11(20):3822–3830. doi: 10.1039/B815946G. PubMed DOI
Schönknecht T, Pörschke D. Electrooptical analysis of α-chymotrypsin at physiological salt concentration. Biophys Chem. 1996;58(1):21–28. doi: 10.1016/0301-4622(95)00082-8. PubMed DOI
Sinelnikova A, Mandl T, Agelii H, Grånäs O, Marklund EG, Caleman C, et al. Protein orientation in time-dependent electric fields: orientation before destruction. Biophys J. 2021;120(17):3709–17. doi: 10.1016/j.bpj.2021.07.017. PubMed DOI PMC
Hekstra DR, White KI, Socolich MA, Henning RW, Srajer V, Ranganathan R. Electric-field-stimulated protein mechanics. Nature. 2016;540(7633):400–405. doi: 10.1038/nature20571. PubMed DOI PMC
Fernandez-Diaz MD, Barsotti L, Dumay E, Cheftel JC. Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white. J Agric Food Chem. 2000;48(6):2332–2339. doi: 10.1021/jf9908796. PubMed DOI
Liu Y-Y, Zhang Y, Zeng X-A, El-Mashad H, Pan Z-L, Wang Q-J. Effect of pulsed electric field on microstructure of some amino acid group of soy protein isolates. Int J Food Eng. 2014;10(1):113–120. doi: 10.1515/ijfe-2013-0033. DOI
Wu L, Zhao W, Yang R, Chen X. Effects of pulsed electric fields processing on stability of egg white proteins. J Food Eng. 2014;139:13–18. doi: 10.1016/j.jfoodeng.2014.04.008. DOI
English NJ, Waldron CJ. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys. 2015;17(19):12407–12440. doi: 10.1039/C5CP00629E. PubMed DOI
Noble BB, Todorova N, Yarovsky I. Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys Chem Chem Phys. 2022;24(11):6327–6348. doi: 10.1039/D1CP05510K. PubMed DOI
Alizadeh H, Davoodi J, Rafii-Tabar H. Deconstruction of the human connexin 26 hemichannel due to an applied electric field; a molecular dynamics simulation study. J Mol Graph Model. 2017;73:108–114. doi: 10.1016/j.jmgm.2017.02.006. PubMed DOI
Marracino P, Havelka D, Prusa J, Liberti M, Tuszynski J, Ayoub AT, et al. Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep. 2019;9(1):10477. doi: 10.1038/s41598-019-46636-4. PubMed DOI PMC
Wang J, Vanga SK, Raghavan V. Structural responses of kiwifruit allergen Act d 2 to thermal and electric field stresses based on molecular dynamics simulations and experiments. Food Funct. 2020;11(2):1373–1384. doi: 10.1039/C9FO02427A. PubMed DOI
Lugli F, Toschi F, Biscarini F, Zerbetto F. Electric field effects on short fibrils of Aβ amyloid peptides. J Chem Theory Comput. 2010;6(11):3516–3526. doi: 10.1021/ct1001335. PubMed DOI
Singh A, Orsat V, Raghavan V. Soybean hydrophobic protein response to external electric field: a molecular modeling approach. Biomolecules. 2013;3(1):168–179. doi: 10.3390/biom3010168. PubMed DOI PMC
Todorova N, Bentvelzen A, Yarovsky I. Electromagnetic field modulates aggregation propensity of amyloid peptides. J Chem Phys. 2020;152(3):035104. doi: 10.1063/1.5126367. PubMed DOI
Astrakas L, Gousias C, Tzaphlidou M. Electric field effects on chignolin conformation. J Appl Phys. 2011;109(9):094702. doi: 10.1063/1.3585867. DOI
Prusa J, Cifra M. Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci Rep. 2019;9(1):19721. doi: 10.1038/s41598-019-56052-3. PubMed DOI PMC
Marracino P, Apollonio F, Liberti M, d’Inzeo G, Amadei A. Effect of high exogenous electric pulses on protein conformation: myoglobin as a case study. J Phys Chem B. 2013;117(8):2273–2279. doi: 10.1021/jp309857b. PubMed DOI
Sinelnikova A, Mandl T, Östlin C, Grånäs O, Brodmerkel MN, Marklund EG, et al. Reproducibility in the unfolding process of protein induced by an external electric field. Chem Sci. 2021;12(6):2030–2038. doi: 10.1039/D0SC06008A. PubMed DOI PMC
Baumketner A. Electric field as a disaggregating agent for amyloid fibrils. J Phys Chem B. 2014;118(50):14578–14589. doi: 10.1021/jp509213f. PubMed DOI
Prusa J, Ayoub AT, Chafai DE, Havelka D, Cifra M. Electro-opening of a microtubule lattice in silico. Comput Struct Biotechnol J. 2021;19:1488–1496. doi: 10.1016/j.csbj.2021.02.007. PubMed DOI PMC
English NJ, Mooney DA (2007) Denaturation of hen egg white lysozyme in electromagnetic fields: a molecular dynamics study. J Chem Phys 126(9). 10.1063/1.2515315 PubMed
English NJ, Solomentsev GY, O'Brien P (2009) Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme. J Chem Phys 131(3):035106. 10.1063/1.3184794 PubMed
Toschi F, Lugli F, Biscarini F, Zerbetto F. Effects of electric field stress on a β-amyloid peptide. J Phys Chem B. 2009;113(1):369–376. doi: 10.1021/jp807896g. PubMed DOI
Amadei A, Marracino P. Theoretical-computational modelling of the electric field effects on protein unfolding thermodynamics. RSC Adv. 2015;5(117):96551–96561. doi: 10.1039/c5ra15605j. DOI
Marracino P, Paffi A, d’Inzeo G. A rationale for non-linear responses to strong electric fields in molecular dynamics simulations. Phys Chem Chem Phys. 2022;24(19):11654–11661. doi: 10.1039/d1cp04466d. PubMed DOI
Marklund EG, Ekeberg T, Moog M, Benesch JLP, Caleman C. Controlling protein orientation in vacuum using electric fields. J Phys Chem Lett. 2017;8(18):4540–4544. doi: 10.1021/acs.jpclett.7b02005. PubMed DOI
Budi A, Legge FS, Treutlein H, Yarovsky I. Electric field effects on insulin chain-B conformation. J Phys Chem B. 2005;109(47):22641–22648. doi: 10.1021/jp052742q. PubMed DOI
della Valle E, Marracino P, Pakhomova O, Liberti M, Apollonio F (2019) Nanosecond pulsed electric signals can affect electrostatic environment of proteins below the threshold of conformational effects: the case study of SOD1 with a molecular simulation study. PLoS ONE 14(8):e0221685. 10.1371/journal.pone.0221685 PubMed PMC
Wang R, Wen QH, Zeng XA, Lin JW, Li J, Xu FY (2022) Binding affinity of curcumin to bovine serum albumin enhanced by pulsed electric field pretreatment. Food Chem 377:131945. 10.1016/j.foodchem.2021.131945 PubMed
Sun WW, Yu SJ, Zeng XA, Yang XQ, Jia X. Properties of whey protein isolate-dextran conjugate prepared using pulsed electric field. Food Res Int. 2011;44(4):1052–1058. doi: 10.1016/j.foodres.2011.03.020. DOI
Zhao W, Yang R. Experimental study on conformational changes of lysozyme in solution induced by pulsed electric field and thermal stresses. J Phys Chem B. 2010;114(1):503–510. doi: 10.1021/jp9081189. PubMed DOI
Havelka D, Zhernov I, Teplan M, Lansky Z, Chafai DE, Cifra M. Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network. Sci Rep. 2022;12(1):2462. doi: 10.1038/s41598-022-06255-y. PubMed DOI PMC
Havelka D, Chafai DE, Krivosudsky O, Klebanovych A, Vostarek F, Kubinova L, et al. Nanosecond pulsed electric field lab-on-chip integrated in super-resolution microscope for cytoskeleton imaging. Adv Mater Technol. 2020;5(3):1900669. doi: 10.1002/admt.201900669. DOI
Casciola M, Liberti M, Denzi A, Paffi A, Merla C, Apollonio F. A computational design of a versatile microchamber for in vitro nanosecond pulsed electric fields experiments. Integration. 2017;58:446–453. doi: 10.1016/j.vlsi.2017.03.005. DOI
Dalmay C, Villemejane J, Joubert V, Silve A, Arnaud-Cormos D, Français O, et al. A microfluidic biochip for the nanoporation of living cells. Biosens Bioelectron. 2011;26(12):4649–4655. doi: 10.1016/j.bios.2011.03.020. PubMed DOI
Merla C, Liberti M, Marracino P, Muscat A, Azan A, Apollonio F, et al. A wide-band bio-chip for real-time optical detection of bioelectromagnetic interactions with cells. Sci Rep. 2018;8(1):5044. doi: 10.1038/s41598-018-23301-w. PubMed DOI PMC
Chafai DE, Vostarek F, Draberova E, Havelka D, Arnaud-Cormos D, Leveque P, et al. Microtubule cytoskeleton remodeling by nanosecond pulsed electric fields. Adv Biosyst. 2020;4(7):e2000070. doi: 10.1002/adbi.202000070. PubMed DOI
Graybill PM, Davalos RV. Cytoskeletal disruption after electroporation and its significance to pulsed electric field therapies. Cancers (Basel) 2020;12(5):1132. doi: 10.3390/cancers12051132. PubMed DOI PMC
Dimova R, Riske KA, Aranda S, Bezlyepkina N, Knorr RL, Lipowsky R. Giant vesicles in electric fields. Soft Matter. 2007;3(7):817–827. doi: 10.1039/B703580B. PubMed DOI
Perrier DL, Vahid A, Kathavi V, Stam L, Rems L, Mulla Y, et al. Response of an actin network in vesicles under electric pulses. Sci Rep. 2019;9(1):8151. doi: 10.1038/s41598-019-44613-5. PubMed DOI PMC
Ho SY, Mittal GS, Cross JD. Effects of high field electric pulses on the activity of selected enzymes. J Food Eng. 1997;31(1):69–84. doi: 10.1016/S0260-8774(96)00052-0. DOI
Jin W, Wang Z, Peng D, Shen W, Zhu Z, Cheng S, et al. Effect of pulsed electric field on assembly structure of α-amylase and pectin electrostatic complexes. Food Hydrocolloids. 2020;101:105547. doi: 10.1016/j.foodhyd.2019.105547. DOI
Rodrigues RM, Avelar Z, Machado L, Pereira RN, Vicente AA. Electric field effects on proteins - novel perspectives on food and potential health implications. Food Res Int. 2020;137:109709. doi: 10.1016/j.foodres.2020.109709. PubMed DOI
Armstrong FA (2002) Insight from protein film voltammetry into mechanism of complex biological electron-transfer reactions. Dalton Trans:661-671. 10.1039/B108359G
del Barrio M, Fourmond V. Redox (in)activations of metalloenzymes: a protein film voltammetry approach. ChemElectroChem. 2019;6:4949–4962. doi: 10.1002/celc.201901028. DOI
Gulaboski R, Lovric M, Mirceski V, Bogeski I, Hoth M. Protein-film voltammetry: a theoretical study of the temperature effect using square-wave voltammetry. Biophys Chem. 2008;137:49–55. doi: 10.1016/j.bpc.2008.06.011. PubMed DOI
Meyer T, Melin F, Xie H, von der Hocht I, Choi SK, Noor MR, et al. Evidence for distinct electron transfer processes in terminal oxidases from different origin by means of protein film voltammetry. J Am Chem Soc. 2014;136:10854–10857. doi: 10.1021/ja505126v. PubMed DOI PMC
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. Rep Prog Phys. 2018;81:26601. doi: 10.1088/1361-6633/aa85f2. PubMed DOI
Leger C, Bertrand P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev. 2008;108:2379–2438. doi: 10.1021/cr0680742. PubMed DOI
Gorton L, Lindgren A, Larsson T, Munteanu FD, Ruzgas T, Gazaryan I. Direct electron transfer between heme-containing enzymes and electrodes as basis for third generation biosensors. Anal Chim Acta. 1999;400:91–108. doi: 10.1016/S0003-2670(99)00610-8. DOI
Cho I-H, Kim DH, Park S. Electrochemical biosensors: perspective on functional nanomaterials for on-site analysis. Biomater Res. 2020;24:6. doi: 10.1186/s40824-019-0181-y. PubMed DOI PMC
Kornienko N, Ly KH, Robinson WE, Heidary N, Zhang JZ, Reisner E. Advancing techniques for investigating the enzyme-electrode interface. Acc Chem Res. 2019;52:1439–1448. doi: 10.1021/acs.accounts.9b00087. PubMed DOI PMC
Szczesny J, Markovic N, Conzuelo F, Zacarias S, Pereira IAC, Lubitz W, et al. A gas breathing hydrogen/air biofuell cell comprising a redox polymer/hydrogenase-based bionanode. Nat Commun. 2018;9:4715. doi: 10.1038/s41467-018-07137-6. PubMed DOI PMC
Wong TS, Schwaneberg U. Protein engineering in bioelectrocatalysis. Curr Opin Biotechnol. 2003;14:590–596. doi: 10.1016/j.copbio.2003.09.008. PubMed DOI
Ha TQ, Planje IJ, White JRG, Aragones AC, Diez-Perez I. Charge transport at the protein-electrode interface in the emerging field of biomolecular electronics. Curr Opin Electrochem. 2021;28:100734. doi: 10.1016/j.coelec.2021.100734. DOI
Kayser B, Fereiro JA, Guo C, Cohen SR, Sheves M, Pecht I, et al. Transistor configuration yields energy level control in protein-based junctions. Nanoscale. 2018;10:21712–21720. doi: 10.1039/C8NR06627B. PubMed DOI
Lee T, Kim S, Kim J, Park S-C, Yoon J, Park C, et al. Recent advances in biomolecule-nanomaterial heterolayer-based charge storage devices for bioelectronic applications. Materials. 2020;13:3520. doi: 10.3390/ma13163520. PubMed DOI PMC
Zhang L, Lu JR, Waigh TA. Electronics of peptide- and protein-based biomaterials. Adv Colloid Interface Sci. 2021;287:102319. doi: 10.1016/j.cis.2020.102319. PubMed DOI
Cahen D, Pecht I, Sheves M. What can we learn from protein-based electron transport junctions? J Phys Chem Lett. 2021;12:11598–11603. doi: 10.1021/acs.jpclett.1c02446. PubMed DOI PMC
Kumar KS, Pasula RR, Lim S, Nijhuis CA. Long-range tunneling processes across ferritin-based junctions. Adv Mater. 2016;28:1824–1830. doi: 10.1002/adma.201504402. PubMed DOI
Marcus RA. On the theory of oxidation-reduction reactions involving electron transfer. I. J Chem Phys. 1956;24(5):966–978. doi: 10.1063/1.1742723. DOI
Marcus RA. Electrostatic free energy and other properties of states having nonequilibrium polarization. I. J Chem Phys. 1956;24(5):979–989. doi: 10.1063/1.1742724. DOI
Artes JM, Diez-Perez I, Sanz F, Gorostiza P. Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy. ACS Nano. 2011;5:2060–2066. doi: 10.1021/nn103236e. PubMed DOI
Elliott M, Jones DD. Approaches to single-molecule studies of metalloprotein electron transfer using scanning probe-based techniques. Biochem Soc Trans. 2018;46:1–9. doi: 10.1042/BST20170229. PubMed DOI
Nazmutdinov RR, Zinkicheva TT, Shermukhamedov SA, Zhang J, Ulstrup J. Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems. Curr Opin Electrochem. 2018;7:179–187. doi: 10.1016/j.coelec.2017.11.013. DOI
Salvatore P, Zeng D, Karlsen KK, Chi Q, Wengel J, Ulstrup J. Electrochemistry of single metalloprotein and DNA-based molecules at Au(111) electrode surfaces. ChemPhysChem. 2013;14:2101–2111. doi: 10.1002/cphc.201300299. PubMed DOI
Garg K, Ghosh M, Eliash T, van Wonderen JH, Butt JN, Shi L, et al. Direct evidence for heme-assisted solid-state electronic conduction in multi-heme c-type cytochromes. Chem Sci. 2018;9:7304–7310. doi: 10.1039/C8SC01716F. PubMed DOI PMC
Agam Y, Nandi R, Kaushansky A, Peskin U, Amdursky N. The porphyrin ring rather than the metal ion dictates long-range electron transport across proteins suggesting coherence-assisted mechanism. Proc Nat Acad Sci USA. 2020;117:32260–32266. doi: 10.1073/pnas.2008741117. PubMed DOI PMC
Zhang B, Song W, Brown J, Nemanich R, Lindsay S. Electronic conductance resonance in non-redox-active proteins. J Am Chem Soc. 2020;142:6432–6438. doi: 10.1021/jacs.0c01805. PubMed DOI PMC
Hitaishi VP, Clement R, Bourassin N, Baaden M, de Poulpiquet A, Sacquin-Mora S, et al. Controlling redox enzyme orientation at planar electrodes. Catal. 2018;8:192. doi: 10.3390/catal8050192. DOI
Mazurenko I, Hitaischi VP, Lojou E. Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis. Curr Opin Electrochem. 2020;19:113–121. doi: 10.1016/j.coelec.2019.11.004. DOI
Biriukov D, Futera Z. Adsorption of amino acids at the gold/aqueous interface: effect of an external electric field. J Phys Chem C. 2021;125:7856–7867. doi: 10.1021/acs.jpcc.0c11248. DOI
Feng J, Slocik JM, Sarikaya M, Naik RR, Farmer BL, Heinz H. Influence of the shape of nanostructured metal surfaces on adsorption of single peptide molecules in aqueous solution. Small. 2012;8(7):1049–1059. doi: 10.1002/smll.201102066. PubMed DOI
Futera Z. Amino-acid interactions with the Au(111) surface: adsorption, band alignment, and interfacial electronic coupling. Phys Chem Chem Phys. 2021;23:10257–10266. doi: 10.1039/D1CP00218J. PubMed DOI
Futera Z, Blumberger J. Adsorption of amino acids on gold: assessing the accuracy of the GolP-CHARMM force field and parametrization of Au-S bonds. J Chem Theory Comput. 2019;15:613–624. doi: 10.1021/acs.jctc.8b00992. PubMed DOI
Hoefling M, Iori F, Corni S, Gottschalk K-E. Interaction of amino acids with the Au(111) surface: adsorption free energies from molecular dynamics simulations. Langmuir. 2010;26(11):8347–8351. doi: 10.1021/la904765u. PubMed DOI
Iori F, Di Felice R, Molinari E, Corni S. GoIP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J Comput Chem. 2009;30:1465–1476. doi: 10.1002/jcc.21165. PubMed DOI
Wright LB, Rodger PM, Corni S, Walsh TR. GoIP-CHARMM: first-principles based force fields for the interaction of proteins with Au(111) and Au(100) J Chem Theory Comput. 2013;9:1616–1630. doi: 10.1021/ct301018m. PubMed DOI
Wright LB, Rodger PM, Walsh TR, Corni S. First-principle-based force field for the interaction of proteins with Au(100)(5x1): an extension of GolP-CHARMM. J Phys Chem C. 2013;117:24292–24306. doi: 10.1021/jp4061329. PubMed DOI
Brusatori MA, Tie Y, Van Tassel PR. Protein adsorption kinetics under an applied electric field: an optical waveguide lightmode spectroscopy study. Langmuir. 2003;19:5089–5097. doi: 10.1021/la0269558. DOI
Mulheran PA, Connell DJ, Kubiak-Ossowska K. Steering protein adsorption at charged surfaces: electric fields and ionic screening. RSC Adv. 2016;6:73709–73716. doi: 10.1039/C6RA16391B. DOI
Xie Y, Liao C, Zhou J. Effects of external electric fields on lysozyme adsorption by molecular dynamics simulations. Biophys Chem. 2013;179:26–34. doi: 10.1016/j.bpc.2013.05.002. PubMed DOI
Amadei A, Daidone I, Bortolotti CA. A general statistical mechanical approach for modeling redox thermodynamics: the reaction and reorganization free energies. RSC Adv. 2013;3:19657–19665. doi: 10.1039/C3RA42842G. DOI
Blumberger J. Free energies for biological electron transfer from QM/MM calculation: method, application and critical assessment. Phys Chem Chem Phys. 2008;10:5651–5667. doi: 10.1039/B807444E. PubMed DOI
Daidone I, Amadei A, Zaccanti F, Borsari M, Bortolotti CA. How the reorganization free energy affects the reduction potential of structurally homologous cytochromes. J Phys Chem Lett. 2014;5:1534–1540. doi: 10.1021/jz5005208. PubMed DOI
Jiang X, Futera Z, Blumberger J. Ergodicity-breaking in thermal biological electron transfer? Cytochrome C Revisited. J Phys Chem B. 2019;123:7588–7598. doi: 10.1021/acs.jpcb.9b05253. PubMed DOI
Kontkanen OV, Biriukov D, Futera Z. Reorganization free energy of copper proteins in solution, in vacuum, and on metal surfaces. J Chem Phys. 2022;156:175101. doi: 10.1063/5.0085141. PubMed DOI
Tipmanee V, Oberhofer H, Park M, Kim KS, Blumberger J. Prediction of reorganization free energies for biological electron transfer: a comparative study of ru-modified cytochromes and a 4-helix bundle protein. J Am Chem Soc. 2010;132:17032–17040. doi: 10.1021/ja107876p. PubMed DOI
Cave RJ, Newton MD. Generalization of the Mulliken-Hush treatment for the calculation of electron transfer matrix elements. Chem Phys Lett. 1996;249:15–19. doi: 10.1016/0009-2614(95)01310-5. DOI
Cave RJ, Newton MD. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: comparison of the generalized Mulliken-Hush and block diagonalization methods. J Chem Phys. 1997;106:9213–9226. doi: 10.1063/1.474023. DOI
Hsu C-P. The electronic couplings in electron transfer and excitation energy transfer. Acc Chem Res. 2009;42:509–518. doi: 10.1021/ar800153f. PubMed DOI
Voityuk AA, Rosch N. Quantum chemical modeling of electron hole transfer through pi stacks of normal and modified pairs of nucleobases. J Phys Chem B. 2002;106:3013–3018. doi: 10.1021/jp013417f. DOI
Oberhofer H, Blumberger J. Insight into the mechanism of the Ru2+-Ru3+ electron self-exhchange reaction from quantitative rate calculations. Angew Chem Int Ed. 2010;49:3631–3634. doi: 10.1002/anie.200906455. PubMed DOI
Senthilkumar K, Grozema FC, Bickelhaupt FM, Siebbeles LDA. Charge transport in columnar stacked triphenylenes: effects of conformational fluctuations on charge transfer integrals and site energies. J Chem Phys. 2003;119(18):9809–9817. doi: 10.1063/1.1615476. DOI
Gillet N, Berstis L, Wu X, Gajdos F, Heck A, de la Lande A, et al. Electronic coupling calculations for bridge-mediated charge transfer using constrained density functional theory (CDFT) and effective Hamiltonian approaches at the density functional theory (DFT) and fragment-orbital density functional tight binding (FODFTB) level. J Chem Theory Comput. 2016;12:4793–4805. doi: 10.1021/acs.jctc.6b00564. PubMed DOI
Oberhofer H, Blumberger J. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set. J Chem Phys. 2010;133:244105. doi: 10.1063/1.3507878. PubMed DOI
Wu Q, Van Voorhis T. Extracting electron transfer coupling elements from constrained density functional theory. J Chem Phys. 2006;125:164105. doi: 10.1063/1.2360263. PubMed DOI
Wu Q, Van Voorhis T. Direct calculation of electron transfer parameters through constrained density functional theory. J Phys Chem A. 2006;110:9212–9218. doi: 10.1021/jp061848y. PubMed DOI
Futera Z, Blumberger J. Electronic couplings for charge transfer across molecule/metal and molecule/semiconductor interfaces: performance of the projector operator-based diabatization approach. J Phys Chem C. 2017;121:19677–19689. doi: 10.1021/acs.jpcc.7b06566. DOI
Ghan S, Kunkel C, Reuter K, Oberhofer H. Improved projection-operator diabatization schemes for the calculation of electronic coupling values. J Chem Theory Comput. 2020;16:7431–7443. doi: 10.1021/acs.jctc.0c00887. PubMed DOI
Kondov I, Cizek M, Benesch C, Wang H, Thoss M. Quantum dynamics of photoinduced electron-transfer reactions in dye-semiconductor systems: first-principles description and application to coumarin 343-TiO2. J Phys Chem C. 2007;111:11970–11981. doi: 10.1021/jp072217m. DOI
Ziogos OG, Blumberger J. Ultrafast estimation of electronic couplings for electron transfer between pi-conjugated organic molecules. II. J Chem Phys. 2021;155:244110. doi: 10.1063/5.0076555. PubMed DOI
Henstridge MC, Laborda E, Rees NV, Compton RG. Marcus-Hush-Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim Acta. 2012;84:12–20. doi: 10.1016/j.electacta.2011.10.026. DOI
Chidsey CED. Free energy and temperature dependence of electron transfer at the metal-electrolyte interface. Science. 1991;251(4996):919–922. doi: 10.1126/science.251.4996.919. PubMed DOI
Breuer M, Rosso KM, Blumberger J. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc Nat Acad Sci USA. 2014;111(2):611–616. doi: 10.1073/pnas.1316156111. PubMed DOI PMC
Byun HS, Pirbadian S, Nakano A, Shi L, El-Naggar MY. Kinetic Monte Carlo simulations and molecular conductance measurements of the bacterial decaheme cytochrome MtrF. ChemElectroChem. 2014;1(11):1932–1939. doi: 10.1002/celc.201402211. DOI
Polizzi NF, Skourtis SS, Beratan DN. Physical constraints on charge transport through bacterial nanowires. Faraday Discuss. 2012;155:43–61. doi: 10.1039/C1FD00098E. PubMed DOI PMC
Cuevas JC, Scheer E. Molecular electronics: an introduction to theory and experiment. World Scientific Publishing; 2017.
Datta S. Electronic Transport in Mesoscopic Systems. Cambridge University Press; 1995.
Landauer R. Conductance determined by transmission: probes and quantised constriction resistance. J Phys: Condens Matter. 1989;1:8099–8110. doi: 10.1088/0953-8984/1/43/011. DOI
Papior N, Lorente N, Frederiksen T, Garcia A, Brandbyge M. Improvements on non-equilibrium and transport green function techniques: the next-generation transiesta. Comp Phys Comm. 2017;212:8–24. doi: 10.1016/j.cpc.2016.09.022. DOI
Romero-Muniz C, Ortega M, Vilhena JG, Diez-Perez I, Perez R, Cuevas JC, et al. Can electron transport through a blue-copper azurin be coherent? An ab initio study. J Phys Chem C. 2021;125:1693–1702. doi: 10.1021/acs.jpcc.0c09364. DOI
Futera Z, Ide I, Kayser B, Garg K, Jiang X, van Wonderen JH, et al. Coherent electron transport across a 3 nm bioelectronic junction made of multi-heme proteins. J Phys Chem Lett. 2020;11:9766–9774. doi: 10.1021/acs.jpclett.0c02686. PubMed DOI PMC
Futera Z, Wu X, Blumberger J. Tunneling-to-hopping transition in multiheme cytochrome bioelectronic junctions. J Phys Chem Lett. 2023;14:445–452. doi: 10.1021/acs.jpclett.2c03361. PubMed DOI
Carey R, Chen L, Gu B, Franco I. When can time-dependent currents be reproduced by the Landauer steady-state approximation? J Chem Phys. 2017;146:174101. doi: 10.1063/1.4981915. PubMed DOI
Nitzan A. Chemical dynamics in condensed phases: relaxation, transfer, and reactions in condensed molecular systems. Oxford University Press; 2014.
Valianti S, Cuevas J-C, Skourtis SS. Charge-transport mechanism in azurin-based monolayer junctions. J Phys Chem C. 2019;123:5907–5922. doi: 10.1021/acs.jpcc.9b00135. DOI
Egger DA, Liu Z-F, Neaton JB, Kronik L. Reliable energy level alignment at physisorbed molecule-metal interfaces from density functional theory. Nano Lett. 2015;15:2448–2455. doi: 10.1021/nl504863r. PubMed DOI PMC
Neaton JB, Hybertsen MS, Louie SG. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys Rev Lett. 2006;97:216405. doi: 10.1103/PhysRevLett.97.216405. PubMed DOI
Biava H, Schreiber T, Katz S, Voller J-S, Stolarski M, Schulz C, et al. Long-range modulations of the electric fields in proteins. J Phys Chem B. 2018;122:8330–8342. doi: 10.1021/acs.jpcb.8b03870. PubMed DOI
Bim D, Alexandrova AN. Electrostatic regulation of blue copper sites. Chem Sci. 2021;12:11406–11413. doi: 10.1039/D1SC02233D. PubMed DOI PMC
Bradshaw RT, Dziedzic J, Skylaris C-K, Essex JW. The role of electrostatics in enzymes: do biomolecular force fields reflect protein electric fields? J Chem Info Model. 2020;60:3131–3144. doi: 10.1021/acs.jcim.0c00217. PubMed DOI
Stuyver T, Ramanan R, Mallick D, Shaik S. Oriented (local) electric fields drive the millionfold enhancement of the H-abstraction catalysis observed for synthetic metalloenzyme analogues. Angew Chem Int Ed. 2020;59:7915–7920. doi: 10.1002/anie.201916592. PubMed DOI
Suydam IT, Snow CD, Pande VS, Boxer SG. Electric fields at the active site of an enzyme: direct comparison of experiment with theory. Science. 2006;313:200–204. doi: 10.1126/science.1127159. PubMed DOI
Htwe EE, Nakama Y, Yamamoto Y, Tanaka H, Imanaka H, Ishida N, et al. Adsorption characteristics of various proteins on a metal surface in the presence of an external electric potential. Colloid Surf B. 2018;166:262–268. doi: 10.1016/j.colsurfb.2018.03.035. PubMed DOI
Martin LJ, Akhavan B, Bilek MMM. Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat Comm. 2018;9:357. doi: 10.1038/s41467-017-02545-6. PubMed DOI PMC
Lakshmi S, Dutta S, Pati SK. Molecular electronics: effect of external electric field. J Phys Chem C. 2008;112:14718–14730. doi: 10.1021/jp800187e. DOI
De Renzi V, Rousseau R, Marchetto D, Biagi a, Scandolo S, del Pennino U. (2005) Metal work-function changes induced by organic adsorbates: a combined experimental and theoretical study. Phys Rev Lett 95:46804. 10.1103/PhysRevLett.95.046804 PubMed
Derry GN, Kern ME, Worth EH. Recommended values of clean metal surface work functions. J Vac Sci Technol A. 2015;33:60801. doi: 10.1116/1.4934685. DOI
Amdursky N, Ferber D, Bortolotti CA, Dolgikh DA, Chertkova RV, Pecht I, et al. Solid-state electron transport via cytochrome c depends on electronic coupling to electrodes and across the protein. Proc Nat Acad Sci USA. 2014;111:5556–5561. doi: 10.1073/pnas.1319351111. PubMed DOI PMC
Casalini S, Berto M, Kovtun A, Operamolla A, Di Rocco G, Facci P, et al. Surface immobilized his-tagged azurin as a model interface for the investigation of vectorial electron transfer in biological systems. Electrochim Acta. 2015;178:638–646. doi: 10.1016/j.electacta.2015.07.156. DOI
Zanetti-Polzi L, Daidone I, Bortolotti CA, Corni S. Surface packing determines the redox potential shift of cytochrome c adsorbed on gold. J Am Chem Soc. 2014;136:12929–12937. doi: 10.1021/ja505251a. PubMed DOI
Jensen PS, Chi Q, Grumsen FB, Abad JM, Horsewell A, Schiffrin DJ, et al. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer. J Phys Chem C. 2007;111:6124–6132. doi: 10.1021/jp068453z. DOI
Liu S, Vareiro MMLM, Fraser S, Jenkins ATA. Control of attachment of bovine serum albumin to pulse plasma-polymerized maleic anhydride by variation of pulse conditions. Langmuir. 2005;21:8572–8575. doi: 10.1021/la051449e. PubMed DOI
Onoda A, Taniguchi T, Inoue N, Kamii A, Hayashi T (2016) Anchoring cytochrome b562 on a gold nanoparticle by a heme-heme pocket interaction. Eur J Inorg Chem:3454-9. 10.1002/ejic.201600301
Wieland F, Bruch R, Bergmann M, Partel S, Urban GA, Dincer C. Enhanced protein immobilization on polymers - a plasma surface activation study. Polymers. 2020;12:104. doi: 10.3390/polym12010104. PubMed DOI PMC
Vacek J, Zatloukalova M, Kabelac M. Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors. Curr Opin. Electrochem. 2022;36:101142. doi: 10.1016/j.coelec.2022.101142. DOI
West RM, Janata J. Praise of mercury. J Electroanal Chem. 2020;858:113773. doi: 10.1016/j.jelechem.2019.113773. DOI
Dorcak V, Kabelac M, Kroutil O, Bednarova K, Vacek J. Electrocatalytic monitoring of peptidic proton-wires. Analyst. 2016;141(15):4554–4557. doi: 10.1039/c6an00869k. PubMed DOI
Dorcak V, Novak D, Kabelac M, Kroutil O, Bednarova L, Veverka V, et al. Structural stability of peptidic His-containing proton wire in solution and in the adsorbed state. Langmuir. 2018;34(24):6997–7005. doi: 10.1021/acs.langmuir.7b04139. PubMed DOI
Kroutil O, Kabelac M, Dorcak V, Vacek J. Structures of peptidic H-wires at mercury surface: molecular dynamics study. Electroanalysis. 2019;31(10):2032–2040. doi: 10.1002/elan.201900314. DOI
Murgida DH. In situ spectroelectrochemical investigations of electrode-confined electron-transferring proteins and redox enzymes. ACS Omega. 2021;6(5):3435–3446. doi: 10.1021/acsomega.0c05746. PubMed DOI PMC
Miao P, Wang B, Han K, Tang Y. Electrochemical impedance spectroscopy study of proteolysis using unmodified gold nanoparticles. Electrochem Commun. 2014;47:21–24. doi: 10.1016/j.elecom.2014.07.013. DOI
Holtz B, Wang Y, Zhu X-Y, Guo A. Denaturing and refolding of protein molecules on surfaces. Proteomics. 2007;7(11):1771–1774. doi: 10.1002/pmic.200700053. PubMed DOI