Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28342847
DOI
10.1016/j.freeradbiomed.2017.03.024
PII: S0891-5849(17)30173-9
Knihovny.cz E-zdroje
- Klíčová slova
- Aminoguanidine, Enzyme inhibition, Mass spectrometry, Methylglyoxal, Oxidative post-translational modification, Reactivity, Sodium pump,
- MeSH
- guanidiny farmakologie MeSH
- hmotnostní spektrometrie MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- ledviny metabolismus MeSH
- ouabain farmakologie MeSH
- oxidační stres MeSH
- produkty pokročilé glykace chemie metabolismus MeSH
- pyruvaldehyd chemie metabolismus MeSH
- sérový albumin hovězí metabolismus MeSH
- skot MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory chemie metabolismus MeSH
- Sus scrofa MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanidiny MeSH
- ouabain MeSH
- pimagedine MeSH Prohlížeč
- produkty pokročilé glykace MeSH
- pyruvaldehyd MeSH
- sérový albumin hovězí MeSH
- sodíko-draslíková ATPasa MeSH
Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16μM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the β-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.
Citace poskytuje Crossref.org