Microtubule Cytoskeleton Remodeling by Nanosecond Pulsed Electric Fields
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32459064
DOI
10.1002/adbi.202000070
Knihovny.cz E-zdroje
- Klíčová slova
- bioinspired materials, cytoskeleton remodeling, end-binding proteins, microtubules, nanosecond pulsed electric fields,
- MeSH
- elektřina * MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- nádorové buněčné linie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Remodeling of nanoscopic structures is not just crucial for cell biology, but it is also at the core of bioinspired materials. While the microtubule cytoskeleton in cells undergoes fast adaptation, adaptive materials still face this remodeling challenge. Moreover, the guided reorganization of the microtubule network and the correction of its abnormalities is still a major aim. This work reports new findings for externally triggered microtubule network remodeling by nanosecond electropulses (nsEPs). At first, a wide range of nsEP parameters, applied in a low conductivity buffer, is explored to find out the minimal nsEP dosage needed to disturb microtubules in various cell types. The time course of apoptosis and microtubule recovery in the culture medium is thereafter assessed. Application of nsEPs to cells in culture media result in modulation of microtubule binding properties to end-binding (EB1) protein, quantified by newly developed image processing techniques. The microtubules in nsEP-treated cells in the culture medium have longer EB1 comets but their density is lower than that of the control. The nsEP treatment represents a strategy for microtubule remodeling-based nano-biotechnological applications, such as engineering of self-healing materials, and as a manipulation tool for the evaluation of microtubule remodeling mechanisms during various biological processes in health and disease.
Institut Universitaire de France Paris F 75005 France
Institute of Molecular Genetics of the Czech Academy of Sciences Vídeňská 1083 Prague 142 20 Czechia
Institute of Physiology of the Czech Academy of Sciences Vídeňská 1083 Prague 142 20 Czechia
University of Limoges CNRS XLIM UMR 7252 Limoges F 87000 France
Zobrazit více v PubMed
N. Tamura, V. M. Draviam, Open Biol. 2012, 2, 120132.
L. Schaedel, S. Triclin, D. Chrétien, A. Abrieu, C. Aumeier, J. Gaillard, L. Blanchoin, M. Théry, K. John, Nat. Phys. 2019, 15, 830.
A. Sahasrabudhe, A. Ghose, J. Indian Inst. Sci. 2012, 92, 4.
A. J. Matamoros, P. W. Baas, Brain Res. Bull. 2016, 126, 217.
S. Gunes, P. Sengupta, R. Henkel, A. Alguraigari, M. M. Sinigaglia, M. Kayal, A. Joumah, A. Agarwal, World J. Mens Health 2020, 38, 9.
P. Dráber, E. Dráberová, in Cytoskeleton and Human Disease, Humana Press, Totowa, NJ 2012, pp. 29-53.
P. W. Baas, Neural Regener Res. 2014, 9, 1265.
A. Walther, Adv. Mater. 2019, 1905111.
J. Boekhoven, W. E. Hendriksen, G. J. M. Koper, R. Eelkema, J. H. van Esch, Science 2015, 349, 1075.
L. Heinen, A. Walther, Sci. Adv. 2019, 5, eaaw0590.
T. D. Ross, H. J. Lee, Z. Qu, R. A. Banks, R. Phillips, M. Thomson, Nature 2019, 572, 224.
D. E. Chafai, V. Sulimenko, D. Havelka, L. Kubínová, P. Dráber, M. Cifra, Adv. Mater. 2019, 31, 1903636.
D. E. Chafai, I. Nemogová, P. Dráber, M. Cifra, IJBEM 2018, 20, 36.
D. E. Chafai, A. Mehle, A. Tilmatine, B. Maouche, D. Miklavčič, Bioelectrochemistry 2015, 106, 249.
R. M. Buey, R. Mohan, K. Leslie, T. Walzthoeni, J. H. Missimer, A. Menzel, S. Bjelić, K. Bargsten, I. Grigoriev, I. Smal, E. Meijering, R. Aebersold, A. Akhmanova, M. O. Steinmetz, MboC 2011, 22, 16.
D. van de Willige, C. C. Hoogenraad, A. Akhmanova, Cell. Mol. Life Sci. 2016, 73, 2053.
G. Lee Thompson, C. C. Roth, D. R. Dalzell, M. Kuipers, B. L. Ibey, J. Biomed. Opt. 2014, 19, 055005.
L. Carr, S. M. Bardet, R. C. Burke, D. Arnaud-Cormos, P. Leveque, R. P. O’Connor, Sci. Rep. 2017, 7, 41267.
I. Munoz, L. Danelli, J. Claver, N. Goudin, M. Kurowska, IK. Madera-Salcedo, J. D. Huang, A. Fischer, C. González-Espinosa, G. de Saint Basile, U. Blank, G. Ménasché, J. Cell Biol. 2016, 215, 203.
Z. Rubíková, V. Sulimenko, T. Paulenda, P. Dráber, Front. Immunol. 2018, 9, 1563.
C. Duellberg, N. I. Cade, D. Holmes, T. Surrey, eLife 2016, 5, 13470.
H. Kiril, U. Mangalanathan, M. Casciola, O. N. Pakhomova, A. G. Pakhomov, BBA, Biochim. Biophys. Acta, Biomembr. 2018, 1860, 2175.
E. T. O’Brien, E. D. Salmon, H. P. Erickson, Cell Motil. Cytoskeleton 1997, 36, 125.
P. Marracino, D. Havelka, J. Průša, M. Liberti, J. Tuszynski, A. T. Ayoub, F. Apollonio, M. Cifra, Sci. Rep. 2019, 9, 10477.
T. D. Ross, H. J. Lee, Q. Zijie, R. A. Banks, R. Philips, M. Thomson, Nature 2019, 572, 224.
Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network
Electro-opening of a microtubule lattice in silico