Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
311532
European Research Council - International
PubMed
28651174
PubMed Central
PMC5667740
DOI
10.1016/j.bioelechem.2017.06.005
PII: S1567-5394(17)30101-9
Knihovny.cz E-zdroje
- Klíčová slova
- A prostate specific antigen, Chronopotentiometric analysis, Lectin-glycoprotein interaction, Mercury electrode, Sialylated glycan isomers,
- MeSH
- aglutininy metabolismus MeSH
- bez černý chemie MeSH
- elektrická vodivost * MeSH
- elektrochemie MeSH
- kyselina N-acetylneuraminová metabolismus MeSH
- Maackia chemie MeSH
- prostatický specifický antigen chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aglutininy MeSH
- kyselina N-acetylneuraminová MeSH
- prostatický specifický antigen MeSH
In recent decades, it has become clear that most of human proteins are glycosylated and that protein glycosylation plays an important role in health and diseases. At present, simple, fast and inexpensive methods are sought for clinical applications and particularly for improved diagnostics of various diseases, including cancer. We propose a label- and reagent-free electrochemical method based on chronopotentiometric stripping (CPS) analysis and a hanging mercury drop electrode for the detection of interaction of sialylated protein biomarker a prostate specific antigen (PSA) with two important lectins: Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA). Incubation of PSA-modified electrode with specific SNA lectin resulted in an increase of CPS peak H of the complex as compared to this peak of individual PSA. By adjusting polarization current and temperature, PSA-MAA interaction can be either eliminated or distinguished from the more abundant PSA-SNA complex. CPS data were in a good agreement with the data obtained by complementary methods, namely surface plasmon resonance and fluorescent lectin microarray. It can be anticipated that CPS will find application in glycomics and proteomics.
Zobrazit více v PubMed
Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–1403. PubMed
Ng SJK, Sinha AK, Loi HY, Khor LK. Asymptomatic metastasis to cricoid from prostate carcinoma: an incidental finding detected on 18F-choline PET/CT. Jpn J Radiol. 2015;33:298–301. PubMed
Wong LIL, Labrecque MP, Ibuki N, Cox ME, Elliott JE, Beischlag TV. p,p′-Dichlorodiphenyltrichloroethane (p,p′-DDT) and p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) repress prostate specific antigen levels in human prostate cancer cell lines. Chem Biol Interact. 2015;230:40–49. PubMed
Llop E, Ferrer-Batallé M, Barrabés S, Guerrero PE, Ramírez M, Saldova R, Rudd PM, Aleixandre RN, Comet J, de Llorens R, Peracaula R. Improvement of prostate cancer diagnosis by detecting PSA glycosylation-specific changes. Theranostics. 2016;6:1190–1204. PubMed PMC
Moyer VA. Screening for prostate cancer: U.S. preventive services task force recommendation statement. Ann Intern Med. 2012;157:120–134. PubMed
Paleček E, Tkáč J, Bartošík M, Bertók TS, Ostatná V, Paleček J. electrochemistry of nonconjugated proteins and glycoproteins. toward sensors for biomedicine and glycomics. Chem Rev. 2015;115:2045–2108. PubMed PMC
Li QK, Chen L, Ao M-H, Chiu JH, Zhang Z, Zhang H, Chan DW. Serum-fucosylated prostate-specific antigen (PSA) improves the differentiation of aggressive from nonaggressive prostate cancers. Theranostics. 2015;5:267–276. PubMed PMC
Badr HA, Alsadek DM, Darwish AA, Elsayed AI, Bekmanov BO, Khussainova EM, Zhang X, Cho WC, Djansugurova LB, Li CZ. Lectin approaches for glycoproteomics in FDA-approved cancer biomarkers. Expert Rev Proteomics. 2014;11:227–236. PubMed
Pihikova D, Pakanova Z, Nemcovic M, Barath P, Belicky S, Bertok T, Kasak P, Mucha J, Tkac J. Sweet Characterisation of Prostate Specific Antigen Using Electrochemical Lectin-Based Immunosensor Assay and MALDI TOF/TOF Analysis: Focus on Sialic Acid. Proteomics. 2016;16:3085–3095. PubMed PMC
Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O'Kennedy RJ. Aberrant PSA glycosylation – a sweet predictor of prostate cancer. Nat Rev Urol. 2013;10:99–107. PubMed
Vermassen T, Speeckaert MM, Lumen N, Rottey S, Delanghe JR. Glycosylation of prostate specific antigen and its potential diagnostic applications. Clin Chim Acta. 2012;413:1500–1505. PubMed
Murthy V, Rishi A, Gupta S, Kannan S, Mahantshetty U, Tongaonkar H, Bakshi G, Prabhash K, Bhanushali P, Shinde B. Clinical impact of prostate specific antigen (PSA) inter-assay variability on management of prostate cancer. Clin Biochem. 2016;49:79–84. PubMed
Wang X, Chen J, Li QK, Peskoe SB, Zhang B, Choi C, Platz EA, Zhang H. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology. 2014;24:935–944. PubMed PMC
Hatakeyama S, Yoneyama T, Tobisawa Y, Ohyama C. Recent progress and perspectives on prostate cancer biomarkers. Int J Clin Oncol. 2017;22:214–221. PubMed PMC
Pihikova D, Kasak P, Kubanikova P, Sokol R, Tkac J. Aberrant sialylation of a prostate-specific antigen: electrochemical label-free glycoprofiling in prostate cancer serum samples. Anal Chim Acta. 2016;934:72–79. PubMed PMC
Belicky S, Tkac J. Can glycoprofiling be helpful in detecting prostate cancer? Chem Pap. 2015;69:90–111. PubMed PMC
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Medicinal Research Reviews. 2017;37:514–626. PubMed PMC
Bertok T, Dosekova E, Belicky S, Holazova A, Lorencova L, Mislovicova D, Paprckova D, Vikartovska A, Plicka R, Krejci J, Ilcikova M, et al. Mixed zwitterion-based self-assembled monolayer interface for impedimetric glycomic analyses of human IgG samples in an array format. Langmuir. 2016;32:7070–7078. PubMed PMC
Labib M, Sargent EH, Kelley SO. Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev. 2016;116:9001–9090. PubMed
Bertok T, Šedivá A, Filip J, Ilcikova M, Kasak P, Velic D, Jane E, Mravcová M, Rovenský J, Kunzo P, Lobotka P, et al. Carboxybetaine modified Interface for electrochemical glycoprofiling of antibodies isolated from human serum. Langmuir. 2015;31:7148–7157. PubMed PMC
Klukova L, Bertok T, Petrikova M, Sediva A, Mislovicova D, Katrlik J, Vikartovska A, Filip J, Kasak P, Andicsová-Eckstein A, Mosnáček J, et al. Glycoprofiling as a novel tool in serological assays of systemic sclerosis: a comparative study with three bioanalytical methods. Anal Chim Acta. 2015;853:555–562. PubMed PMC
Jolly P, Tamboli V, Harniman RL, Estrela P, Allender CJ, Bowen JL. Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens Bioelectron. 2016;75:188–195. PubMed
Tzouvadaki I, Jolly P, Lu X, Ingebrandt S, de Micheli G, Estrela P, Carrara S. Label-free ultrasensitive memristive aptasensor. Nano Lett. 2016;16:4472–4476. PubMed
Pihíková D, Belicky Š, Kasák P, Bertok T, Tkac J. Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst. 2016;141:1044–1051. PubMed PMC
Trefulka M, Palecek E. Can voltammetry distinguish glycan isomers? Chem Pap. 2015;69:241–244.
Strmečki S, Trefulka M, Zatloukalová P, Durech M, Vojtesek B, Paleček E. Immunoassays of chemically modified polysaccharides, glycans in glycoproteins and ribose in nucleic acids. Anal Chim Acta. 2017;955:108–115. PubMed
Ostatna V, Cernocka H, Palecek E. Protein structure-sensitive electrocatalysis at DTT-modified electrodes. J Am Chem Soc. 2010;132:9408–9413. PubMed
Palecek E, Cernocka H, Ostatna V, Navratilova L, Brazdova M. Detection of p53 protein sequence-specific DNA binding at an electrified interface. Anal Chim Acta. 2014;828:1–8. PubMed
Palecek E, Ostatna V, Cernocka H, Joerger AC, Fersht AR. Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. J Am Chem Soc. 2011;133:7190–7196. PubMed
Palecek E, Ostatna V, Masarik M, Bertoncini CW, Jovin TM. Changes in interfacial properties of alpha-synuclein preceding its aggregation. Analyst. 2008;133:76–84. PubMed
Vargová V, Helma R, Paleček E, Ostatná V. Electrochemical sensing of Concanavalin A and ovalbumin interaction in solution. Anal Chim Acta. 2016;935:97–103. PubMed
Dorcak V, Ostatna V, Palecek E. Electrochemical reduction and oxidation signals of angiotensin peptides. Role of individual amino acid residues. Electrochem Commun. 2013;31:80–83.
Černocká H, Ostatná V, Paleček E. Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density. Electrochim Acta. 2015;174:356–360.
Vetterl V, Hason S. Electrochemical Properties of Nucleic Acid Components. In: Palecek E, Scheller F, Wang J, editors. Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics. Elsevier; Amsterdam: 2005. pp. 18–73.
Barek J, Fischer J, Navratil T, Peckova K, Yosypchuk B, Zima J. Nontraditional electrode materials in environmental analysis of biologically active organic compounds. Electroanalysis. 2007;19:2003–2014.
Yosypchuk B, Heyrovsky M, Palecek E, Novotny L. Use of solid amalgam electrodes in nucleic acid analysis. Electroanalysis. 2002;14:1488–1493.
Lövgren J, Valtonen-André C, Marsal K, Liua H, Lundwall Å. Measurement of prostate-specific antigen and human glandular Kallikrein 2 in different body fluids. J Androl. 1999;20:348–355. PubMed
Wang TJ, Rittenhouse HG, Wolfert RL, Lynne CM, Brackett NL. PSA concentrations in seminal plasma. Clin Chem. 1998;44:895–896. PubMed
Juskova P, Ostatna V, Palecek E, Foret F. Fabrication and characterization of solid mercury amalgam electrodes for protein analysis. Anal Chem. 2010;82:2690–2695. PubMed
Palecek E, Trefulka M. Electrocatalytic detection of polysaccharides at picomolar concentrations. Analyst. 2011;136:321–326. PubMed