Professor Emil Paleček: seven decades with electrodes and biomolecules at the Institute of Biophysics of the CAS
Status Publisher Language English Country Germany Media print-electronic
Document type Journal Article, Review
Grant support
22-11252S
Grantová Agentura České Republiky
PubMed
40562953
DOI
10.1007/s00249-025-01771-x
PII: 10.1007/s00249-025-01771-x
Knihovny.cz E-resources
- Keywords
- Electrochemistry, Glycans, Modification, Nucleic acids, Proteins, Structure,
- Publication type
- Journal Article MeSH
- Review MeSH
This year we celebrate seventy years since the establishment of the Institute of Biophysics of the Czechoslovak Academy of Sciences (IBP) (founded on January 1, 1955). If we look into the biography of Professor Emil Paleček (born on October 3, 1930), one of the most world-recognized personalities associated with the Institute and one of the most cited Czech scientists, known as the founder of nucleic acids electrochemistry, we are drawn to the same year, i.e. 1955, as the year in which Emil Paleček finished his studies in biochemistry and joined the IBP, where he worked with admirable vitality, enthusiasm and dedication until his death (October 30, 2018). In the context of celebration of founding of the Institute, we would like to commemorate in this article a personality who significantly influenced the history of the Institute alongside the important discoveries and research directions that defined his extremely successful career. We prefer this form, which is a sort of a mini-review of the most important results of the laboratory obtained under EP's leadership over 63 years, presented in mutual context and natural relations. For his life's work, Professor Paleček received many prestigious awards, with the Czech Head Award in 2014 and the Neuron Foundation Award in 2017 being the most distinguished.
See more in PubMed
Bartosik M, Hrstka R, Palecek E, Vojtesek B (2014) Magnetic bead-based hybridization assay for electrochemical detection of microRNA. Anal Chim Acta 813:35–40 PubMed DOI
Belicky S, Cernocká H, Bertok T, Holazova A, Réblová K, Palecek E, Tkac J, Ostatná V (2017) Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry 117:89–94 PubMed DOI PMC
Berg H (1957) Polarographische Untersuchungen an Nucleinsauren und Nucleasen. 1. Polarographischer Nachweis von Proteinen Neben Nucleinsauren. Biochem Z 329:274–276 PubMed
Billová S, Kizek R, Palecek E (2002) Differential pulse adsorptive stripping voltammetry of osmium-modified peptides. Bioelectrochemistry 56:63–66 PubMed DOI
Boublikova P, Jelen F, Palecek E (1986) Adsorptive stripping voltammetry of DNA. Stud Biophys 114:83–90
Brabec V, Dryhurst G (1978a) Electrochemical behavior of natural and biosynthetic polynucleotides at pyrolytic-graphite electrode: a new probe for studies of polynucleotide structure and reactions. J Electroanal Chem 89:161–173 DOI
Brabec V, Dryhurst G (1978b) Electrochemical oxidation of polyadenylic-acid at graphite electrodes. J Electroanal Chem 91:219–229 DOI
Brabec V, Dryhurst G (1978c) Electrochemical oxidation of polynucleotides at graphite electrodes—new probe of nucleic-acids structure. Stud Biophys 67:23–24
Brabec V, Palecek E (1976a) Interaction of nucleic-acids with electrically charged surfaces. 2. conformational-changes in double-helical polynucleotides. Biophys Chem 4:79–92 PubMed DOI
Brabec V, Palecek E (1976b) Interaction of nucleic-acids with electrically charged surfaces. 3. surface denaturation of DNA on mercury-electrode in 2 potential regions. Stud Biophys 60:105–110
Brázda V, Palecek J, Pospisilová S, Vojtêsek B, Palecek E (2000) Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem Biophys Res Commun 267:934–939 PubMed DOI
Brázdová M, Palecek J, Cherny DI, Billová S, Fojta M, Pecinka P, Vojtesek B, Jovin TM, Palecek E (2002) Role of tumor suppressor p53 domains in selective binding to supercoiled DNA. Nucleic Acids Res 30:4966–4974 PubMed DOI PMC
Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Fojta M, Palecek E (1996a) Trace measurements of plasmid DNAs by adsorptive stripping potentiometry at carbon paste electrodes. Bioelectrochem Bioenerg 40:41–47 DOI
Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996b) Evaluation of different carbon electrodes for adsorptive stripping analysis of nucleic acids. Electroanalysis 8:753–758 DOI
Cai XH, Rivas G, Farias PAM, Shiraishi H, Wang J, Palecek E (1996c) Potentiometric stripping analysis of bioactive peptides at carbon electrodes down to subnanomolar concentrations. Anal Chim Acta 332:49–57 DOI
Cai XH, Rivas G, Shirashi H, Farias P, Wang J, Tomschik M, Jelen F, Palecek E (1997) Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces. Anal Chim Acta 344:65–76 DOI
Cernocká H, Ostatná V, Palecek E (2015) Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density. Electrochim Acta 174:356–360 DOI
Cernocká H, Fojt L, Adámik M, Brázdová M, Palecek E, Ostatná V (2019) Interfacial properties of p53-DNA complexes containing various recognition elements. J Electroanal Chem 848:113300 DOI
Dorcák V, Palecek E (2009) Electrochemical determination of thioredoxin redox states. Anal Chem 81:1543–1548 PubMed DOI
Dorcák V, Palecek E (2019) Catalytic deuterium evolution and H/D exchange in DNA. ChemElectroChem 6:1032–1039 DOI
Fojta M, Palecek E (1997) Supercoiled DNA-modified mercury electrode: a highly sensitive tool for the detection of DNA damage. Anal Chim Acta 342:1–12 DOI
Fojta M, Teijeiro C, Palecek E (1994) Cyclic voltammetry with RNA-modified mercury-electrode. Bioelectrochem Bioenerg 34:69–76 DOI
Fojta M, Bowater RP, Stanková V, Havran L, Lilley DMJ, Palecek E (1998a) Two superhelix density-dependent DNA transitions detected by changes in DNA adsorption/desorption behavior. Biochemistry 37:4853–4862 PubMed DOI
Fojta M, Stankova V, Palecek E, Koscielniak P, Mitas J (1998b) A supercoiled DNA-modified mercury electrode-based biosensor for the detection of DNA strand cleaving agents. Talanta 46:155–161 PubMed DOI
Fojta M, Kubicárová T, Palecek E (1999) Cleavage of supercoiled DNA by deoxyribonuclease I in solution and at the electrode surface. Electroanalysis 11:1005–1012 DOI
Fojta M, Kubicárová T, Palecek E (2000) Electrode potential-modulated cleavage of surface-confined DNA by hydroxyl radicals detected by an electrochemical biosensor. Biosens Bioelectron 15:107–115 PubMed DOI
Fojta M, Havran L, Kubicárová T, Palecek E (2002) Electrode potential-controlled DNA damage in the presence of copper ions and their complexes. Bioelectrochemistry 55:25–27 PubMed DOI
Fojta M, Havran L, Kizek R, Billova S, Palecek E (2004) Multiply osmium-labeled reporter probes for electrochemical DNA hybridization assays: detection of trinucleotide repeats. Biosens Bioelectron 20:985–994 PubMed DOI
Fojta M, Kostecka P, Trefulka MR, Havran L, Palecek E (2007) “Multicolor” electrochemical labeling of DNA hybridization probes with osmium tetroxide complexes. Anal Chem 79:1022–1029 PubMed DOI
Fojta M, Billová S, Havran L, Pivonková H, Cernocká H, Horáková P, Palecek E (2008) Osmium tetroxide, 2,2′-bipyridine: Electroactive marker for probing accessibility of tryptophan residues in proteins. Anal Chem 80:4598–4605 PubMed DOI
Fojta M, Kostecka P, Pivonková H, Horáková P, Havran L (2011) Osmium tetroxide complexes as versatile tools for structure probing and electrochemical analysis of biopolymers. Curr Anal Chem 7:35–50 DOI
Glikin GC, Vojtiskova M, Renadescalzi L, Palecek E (1984) Osmium-tetroxide—a new probe for site-specific distortions in supercoiled DNAs. Nucleic Acids Res 12:1725–1735 PubMed DOI PMC
Hocek M, Fojta M (2011) Nucleobase modification as redox DNA labelling for electrochemical detection. Chem Soc Rev 40:5802–5814 PubMed DOI
Jagelská EB, Brázda V, Pecinka P, Palecek E, Fojta M (2008) DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem J 412:57–63 PubMed DOI
Jelen F, Yosypchuk B, Kourilová A, Novotny L, Palecek E (2002) Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. Anal Chem 74:4788–4793 PubMed DOI
Lilley DMJ, Palecek E (1984) The supercoil-stabilized cruciform of Cole1 is hyper-reactive to osmium-tetroxide. EMBO J 3:1187–1192 PubMed DOI PMC
Lukasova E, Palecek E (1966) Oscillopolarographic behaviour of deoxyribonucleic acids isolated from Bacillus subtilis and Bacillus brevis. Biophysik 3:272–280 PubMed DOI
Lukasova E, Palecek E (1976) Reaction of double-helical DNA with sodium bisulfite. Stud Biophys 60:61–71
Marmur J, Mandel M, Kahan FM, Levine J, Greenspan CM, Palecek E (1963) Specificity of complementary RNA Formed by Bacillus subtilis infected with bacteriophage SP8. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, New York, pp 191–199
Masarík M, Stobiecka A, Kizek R, Jelen F, Pechan Z, Hoyer W, Jovin TM, Subramaniam V, Palecek E (2004) Sensitive electrochemical detection of native and aggregated α-synuclein protein involved in Parkinson’s disease. Electroanalysis 16:1172–1181 DOI
Ostatná V, Uslu B, Dogan B, Ozkan S, Palecek E (2006) Native and denatured bovine serum albumin.: D.c. polarography, stripping voltammetry and constant current chronopotentiometry. J Electroanal Chem 593:172–178 DOI
Ostatná V, Cernocká H, Palecek E (2010) Protein structure-sensitive electrocatalysis at dithiothreitol-modified electrodes. J Am Chem Soc 132:9408–9413 PubMed DOI
Palecek E (1958) Oszillographische Polarographie der Nucleinsauren und ihrer Bestandteile. Naturwissenschaften 45:186–187 DOI
Palecek E (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188:656–657 PubMed DOI
Palecek E (1965) Changes in oscillopolarographic behaviour of deoxyribonucleic acids at temperatures below denaturation temperature. J Mol Biol 11:839–840 PubMed DOI
Palecek E (1967) Polarographic behaviour of double-helical DMA containing single-strand breaks. Biochim Biophys Acta 145:410–417 PubMed DOI
Palecek E (1976) Premelting changes in DNA secondary structure. Stud Biophys 55:15–16
Palecek E (1985) Determination of pseudouridine at submicromolar concentrations by cathodic stripping voltammetry at a mercury-electrode. Anal Chim Acta 174:103–113 DOI
Palecek E (1991) Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol 26:151–226 PubMed DOI
Palecek E, Bartosik M (2018) Intrinsic electrocatalysis in DNA. ChemElectroChem 5:936–942 DOI
Palecek E, Fojta M (2007) Magnetic beads as versatile tools for electrochemical DNA and protein biosensing. Talanta 74:276–290 PubMed DOI
Palecek E, Frary BD (1966) A highly sensitive pulse-polarographic estimation of denatured deoxyribonucleic acid in native deoxyribonucleic acid samples. Archiv Biochem Biophys 115:431–436 DOI
Palecek E, Hung MA (1983) Determination of nanogram quantities of osmium-labeled nucleic-acids by stripping (inverse) voltammetry. Anal Biochem 132:236–242 PubMed DOI
Palecek E, Postbieglova I (1986) Adsorptive stripping voltammetry of biomacromolecules with transfer of the adsorbed layer. J Electroanal Chem 214:359–371 DOI
Palecek E, Rímánková L (2014) Chitosan catalyzes hydrogen evolution at mercury electrodes. Electrochem Commun 44:59–62 DOI
Palecek E, Jelen F, Postbieglova I (1989) Adsorptive transfer stripping voltammetry offers new possibilities in DNA research. Stud Biophys 130:51–54
Palecek E, Vlk D, Vojtiskova M, Boublikova P (1995) Complex of osmium tetroxide with 1,10-phenanthroline binds covalently to double-stranded DNA. J Biomol Struct Dyn 13:537–546 PubMed DOI
Palecek E, Vlk D, Stankova V, Brazda V, Vojtesek B, Hupp TR, Schaper A, Jovin TM (1997) Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene 15:2201–2209 PubMed DOI
Palecek E, Brázdová M, Brázda V, Palecek J, Billová S, Subramaniam V, Jovin TM (2001) Binding of p53 and its core domain to supercoiled DNA. Eur J Biochem 268:573–581 PubMed DOI
Palecek E, Kizek R, Havran L, Billova S, Fojta M (2002) Electrochemical enzyme-linked immunoassay in a DNA hybridization sensor. Anal Chim Acta 469:73–83 DOI
Palecek E, Masarík M, Kizek R, Kuhlmeier D, Hassmann J, Schülein J (2004) Sensitive electrochemical determination of unlabeled MutS protein and detection of point mutations in DNA. Anal Chem 76:5930–5936 PubMed DOI
Palecek E, Ostatná V, Masarik M, Bertoncini CW, Jovin TM (2008) Changes in interfacial properties of α-synuclein preceding its aggregation. Analyst 133:76–84 PubMed DOI
Palecek E, Ostatná V, Cernocká H, Joerger AC, Fersht AR (2011) Electrocatalytic monitoring of metal binding and mutation-induced conformational changes in p53 at picomole level. J Am Chem Soc 133:7190–7196 PubMed DOI
Palecek E, Bartosík M, Ostatná V, Trefulka M (2012) Electrocatalysis in proteins, nucleic acids and carbohydrates. Chem Rec 12:27–45 PubMed DOI
Palecek E, Tkác J, Bartosík M, Bertók T, Ostatná V, Palecek J (2015) Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 115:2045–2108 PubMed DOI PMC
Palecek E, Heyrovsky M, Dorcák V (2018) J. Heyrovsky’s oscillographic polarography. roots of present chronopotentiometric analysis of biomacromolecules. Electroanalysis 30:1259–1270 DOI
Strmecki S, Plavsic M, Cosovic B, Ostatna V, Palecek E (2009) Constant current chronopotentiometric stripping of sulphated polysaccharides. Electrochem Commun 11:2032–2035 DOI
Tomschik M, Havran L, Fojta M, Palecek E (1998) Constant current chronopotentiometric stripping analysis of bioactive peptides at mercury and carbon electrodes. Electroanalysis 10:403–409 DOI
Trefulka M, Palecek E (2009) Voltammetry of Os(VI)-modified polysaccharides at carbon electrodes. Electroanalysis 21:1763–1766 DOI
Trefulka M, Palecek E (2014) Direct chemical modification and voltammetric detection of glycans in glycoproteins. Electrochem Commun 48:52–55 DOI
Trefulka M, Palecek E (2017) Distinguishing glycan isomers by voltammetry. Modification of 2,3-sialyllactose and 2,6-sialyllactose by osmium(VI) complexes. Electrochem Commun 85:19–22 DOI
Trefulka M, Ostatná V, Havran L, Fojta M, Palecek E (2007) Covalent labeling of nucleosides with VIII- and VI-valent osmium complexes. Electroanalysis 19:1281–1287 DOI
Trefulka M, Cernocká H, Fojt L, Palecek E, Ostatná V (2019) Distinguishing the glycan isomers 2,3-sialyllactose and 2,6-sialyllactose by voltammetry after modification with osmium(VI) complexes. Anal Chim Acta 1067:56–62 PubMed DOI
Vargová V, Zivanovic M, Dorcák V, Palecek E, Ostatná V (2013) Catalysis of hydrogen evolution by polylysine, polyarginine and polyhistidine at mercury electrodes. Electroanalysis 25:2130–2135 DOI
Vojtiskova M, Lukasova E, Palecek E (1980) Large-scale isolation of Plasmid Col E1 covalently closed circular DNA and its characterization by differential pulse polarography. Stud Biophys 79:85–86
Vojtiskova M, Mirkin S, Lyamichev V, Voloshin O, Frankkamenetskii M, Palecek E (1988) Chemical probing of the homopurine homopyrimidine tract in supercoiled DNA at single-nucleotide resolution. FEBS Lett 234:295–299 PubMed DOI
Vorlickova M, Palecek E (1970) Conformational changes in region of ends of DNA molecule at premelting temperatures. FEBS Lett 7:38–40 PubMed DOI
Vorlickova M, Palecek E (1974) Study of Changes in DNA conformation caused by ionizing and ultraviolet-radiation by means of pulse polarography and circular-dichroism. Int J Radiat Biol 26:363–372
Wang J, Cai XH, Wang JY, Jonsson C, Palecek E (1995) Trace measurements of RNA by potentiometric stripping analysis at carbon-paste electrodes. Anal Chem 67:4065–4070 DOI
Wang J, Palecek E, Nielsen PE, Rivas G, Cai XH, Shiraishi H, Dontha N, Luo DB, Farias PAM (1996a) Peptide nucleic acid probes for sequence-specific DNA biosensors. J Am Chem Soc 118:7667–7670 DOI
Wang J, Rivas G, Cai XH, Chicharro M, Farias PAM, Palecek E (1996b) Trace measurements of insulin by potentiometric stripping analysis at carbon paste electrodes. Electroanalysis 8:902–906 DOI
Wang J, Rivas G, Cai XH, Chicharro M, Dontha N, Luo DB, Palecek E, Nielsen PE (1997a) Adsorption and detection of peptide nucleic acids at carbon paste electrodes. Electroanalysis 9:120–124 DOI
Wang J, Rivas G, Cai XH, Chicharro M, Parrado C, Dontha N, Begleiter A, Mowat M, Palecek E, Nielsen PE (1997b) Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor. Anal Chim Acta 344:111–118 DOI
Wang J, Ozsoz M, Cai XH, Rivas G, Shiraishi H, Grant DH, Chicharro M, Fernandes J, Palecek E (1998) Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem Bioenerg 45:33–40 DOI
Wang J, Kawde AN, Erdem A, Salazar M (2001) Magnetic bead-based label-free electrochemical detection of DNA hybridization. Analyst 126:2020–2024 PubMed DOI