Disentangling direct and indirect effects of water availability, vegetation, and topography on avian diversity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30341321
PubMed Central
PMC6195560
DOI
10.1038/s41598-018-33671-w
PII: 10.1038/s41598-018-33671-w
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- ekologie MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- podnebí * MeSH
- ptáci fyziologie MeSH
- rostliny MeSH
- voda * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Názvy látek
- voda * MeSH
Climate is a major driver of species diversity. However, its effect can be either direct due to species physiological tolerances or indirect, whereby wetter climates facilitate more complex vegetation and consequently higher diversity due to greater resource availability. Yet, studies quantifying both direct and indirect effects of climate on multiple dimensions of diversity are rare. We used extensive data on species distributions, morphological and ecological traits, and vegetation across Australia to quantify both direct (water availability) and indirect (habitat diversity and canopy height) effects of climate on the species richness (SR), phylogenetic diversity (PD), and functional diversity (FD) of 536 species of birds. Path analyses revealed that SR increased with wetter climates through both direct and indirect effects, lending support for the influence of both physiological tolerance and vegetation complexity. However, residual PD and residual FD (adjusted for SR by null models) were poorly predicted by environmental conditions. Thus, the FD and PD of Australian birds mostly evolved in concert with SR, with the possible exception of the higher-than-expected accumulation of avian lineages in wetter and more productive areas in northern and eastern Australia (with high residual PD), permitted probably by older biome age.
Zobrazit více v PubMed
Currie DJ, Paquin V. Large-scale biogeographical patterns of species richness of trees. Nature. 1987;329:326–327. doi: 10.1038/329326a0. DOI
Currie DJ. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 1991;137:27–49. doi: 10.1086/285144. DOI
Hawkins BA, et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology. 2003;84:3105–3117. doi: 10.1890/03-8006. DOI
Buckley LB, Hurlbert AH, Jetz W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Global Ecol. Biogeogr. 2012;21:873–885. doi: 10.1111/j.1466-8238.2011.00737.x. DOI
Hurlbert AH. Species-energy relationships and habitat complexity in bird communities. Ecol. Lett. 2004;7:714–720. doi: 10.1111/j.1461-0248.2004.00630.x. DOI
Tews J. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 2004;31:79–92. doi: 10.1046/j.0305-0270.2003.00994.x. DOI
MacArthur RH, MacArthur JW. On bird species diversity. Ecology. 1961;42:594–598. doi: 10.2307/1932254. DOI
Willson M. Avian community organization and habitat structure. Ecology. 1974;55:1017–1029. doi: 10.2307/1940352. DOI
Gouveia SF, Villalobos F, Dobrovolski R, Belträo-Mendes R, Ferrari SF. Forest structure drives global diversity of primates. J. Anim. Ecol. 2014;83:1523–1530. doi: 10.1111/1365-2656.12241. PubMed DOI
Belmaker J, Sekercioglu CH, Jetz W. Global patterns of specialization and coexistence in bird assemblages. J. Biogeogr. 2012;39:193–203. doi: 10.1111/j.1365-2699.2011.02591.x. DOI
Stein A, Gerstner K, Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014;17:866–880. doi: 10.1111/ele.12277. PubMed DOI
Ferger SW, Schleuning M, Hemp A, Howell KM, Böhning-Gaese K. Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecol. Biogeogr. 2014;23:541–549. doi: 10.1111/geb.12151. DOI
Badgley C, et al. Biodiversity and topographic complexity: Modern and geohistorical perspectives. Trends Ecol. Evol. 2017;32:211–226. doi: 10.1016/j.tree.2016.12.010. PubMed DOI PMC
Menéndez R, et al. Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology. 2007;88:605–611. doi: 10.1890/06-0539. PubMed DOI
Kissling WD, Field R, Böhning-Gaese K. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Global Ecol. Biogeogr. 2008;17:327–339. doi: 10.1111/j.1466-8238.2007.00379.x. DOI
Jetz W, Kreft H, Ceballos G, Mutke J. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B. 2009;276:269–278. doi: 10.1098/rspb.2008.1005. PubMed DOI PMC
Zhang J, Kissling WD, He F. Local forest structure, climate and human disturbance determine regional distribution of boreal bird species richness in Alberta, Canada. J. Biogeogr. 2013;40:1131–1142. doi: 10.1111/jbi.12063. DOI
Jiménez-Alfaro B, Chytrý M, Mucina L, Grace JB, Rejmánek M. Disentangling vegetation diversity from climate-energy and habitat heterogeneity for explaining animal geographic patterns. Ecol. Evol. 2016;6:1515–1526. doi: 10.1002/ece3.1972. PubMed DOI PMC
Graham CH, Parra JL, Rahbek C, McGuire JA. Phylogenetic structure in tropical hummingbird communities. PNAS. 2009;106:19673–19678. doi: 10.1073/pnas.0901649106. PubMed DOI PMC
Schleuter D, et al. Geographic isolation and climate govern the functional diversity of native fish communities in European drainage basins. Global Ecol. Biogeogr. 2012;21:1083–1095. doi: 10.1111/j.1466-8238.2012.00763.x. DOI
Lanier HC, Edwards DL, Knowles LL. Phylogenetic structure of vertebrate communities across the Australian arid zone. J. Biogeogr. 2013;40:1059–1070. doi: 10.1111/jbi.12077. DOI
Vollstädt MGR, et al. Direct and indirect effects of climate, human disturbance and plant traits on avian functional diversity. Global Ecol. Biogeogr. 2017;26:963–972. doi: 10.1111/geb.12606. DOI
Faith DP. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992;61:1–10. doi: 10.1016/0006-3207(92)91201-3. DOI
Safi K, et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos. T. R. Soc. B. 2011;366:2536–2544. doi: 10.1098/rstb.2011.0024. PubMed DOI PMC
Swenson, N. G. (ed) Functional and phylogenetic ecology in R. (Springer, New York, US, 2014).
Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better) Funct. Ecol. 2015;29:600–614. doi: 10.1111/1365-2435.12425. DOI
Cadotte, M. W. & Davies, T. J. (eds) Phylogenies in Ecology: A guide to concepts and methods. (Princeton University Press, Princeton, UK, 2016).
Voskamp A, Baker DJ, Stephens PA, Valdes PJ, Willis SG. Global patterns in the divergence between phylogenetic diversity and species richness in terrestrial birds. J. Biogeogr. 2017;44:709–721. doi: 10.1111/jbi.12916. DOI
Miller ET, Wagner SK, Harmon LJ, Ricklefs RE. Radiating despite a lack of character: Ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co-occurring in arid Australian environments. Am. Nat. 2017;189:E14–30. doi: 10.1086/690008. PubMed DOI
Oliveira BF, et al. Species and functional diversity accumulate differently in mammals. Global Ecol. Biogeogr. 2016;25:1119–1130. doi: 10.1111/geb.12471. DOI
Sandel B, et al. The influence of late quaternary climate-change velocity on species endemism. Science. 2011;334:660–664. doi: 10.1126/science.1210173. PubMed DOI
Belmaker J, Jetz W. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol. Lett. 2015;18:563–571. doi: 10.1111/ele.12438. PubMed DOI
Fine PVA. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. S. 2015;46:369–392. doi: 10.1146/annurev-ecolsys-112414-054102. DOI
Ordonez A, Svenning JC. Geographic patterns in functional diversity deficits are linked to glacial-interglacial climate stability and accessibility. Global Ecol. Biogeogr. 2015;24:826–837. doi: 10.1111/geb.12324. DOI
Ordonez A, Svenning JC. Strong paleoclimatic legacies in current plant functional diversity patterns across Europe. Ecol. Evol. 2016;6:3405–3416. doi: 10.1002/ece3.2131. PubMed DOI PMC
Pinkert S, Brandl R, Zeuss D. Colour lightness of dragonfly assemblages across North America andEurope. Ecography. 2017;40:1110–1117. doi: 10.1111/ecog.02578. DOI
Byrne M, et al. Birth of a biome: Insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 2008;17:4398–4417. doi: 10.1111/j.1365-294X.2008.03899.x. PubMed DOI
Byrne M, et al. Decline of a biome: Evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 2011;38:1635–1656. doi: 10.1111/j.1365-2699.2011.02535.x. DOI
MacLaren, S. Drift of a continent: Broken connections in Invasion biology and ecological theory: Insights from a continent in transformation (eds Prins, H. H. T. & Gordon, I. J.) 256–282 (Cambridge University Press, Cambridge, UK, 2014).
Hawkins BA, Diniz-Filho JAF, Soeller SA. Water links the historical and contemporary components of the Australian bird diversity gradient. J. Biogeogr. 2005;32:1035–1042. doi: 10.1111/j.1365-2699.2004.01238.x. DOI
Corlett RT, Primack RB. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 2006;21:104–110. doi: 10.1016/j.tree.2005.12.002. PubMed DOI
Stannard, C. A. Drift of a continent: Broken connections in Invasion biology and ecological theory: Insights from a continent in transformation (eds Prins, H. H. T. & Gordon, I. J.) 241–255 (Cambridge University Press, Cambridge, UK, 2014).
Miller ET, Zanne AE, Ricklefs RE. Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecol. Lett. 2013;16:1186–1194. doi: 10.1111/ele.12156. PubMed DOI
Pianka ER. The structure of lizard communities. Annu. Rev. Ecol. Syst. 1973;4:53–74. doi: 10.1146/annurev.es.04.110173.000413. DOI
Pianka ER. Habitat specificity, speciation, and species density in Australian desert lizards. Ecology. 1969;50:498–502. doi: 10.2307/1933908. DOI
Moyle RG, et al. Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nat. Commun. 2016;7:1–7. doi: 10.1038/ncomms12709. PubMed DOI PMC
Marki PZ, et al. Supermatrix phylogeny and biogeography of the Australasian Meliphagides radiation (Aves: Passeriformes) Mol. Phylogenet. Evol. 2017;107:516–529. doi: 10.1016/j.ympev.2016.12.021. PubMed DOI
Joseph L, et al. A new synthesis of the molecular systematics and biogeography of honeyeaters (Passeriformes: Meliphagidae) highlights biogeographical and ecological complexity of a spectacular avian radiation. Zool. Scr. 2014;43:235–248. doi: 10.1111/zsc.12049. DOI
R Core Team. R: A language and environment for statistical computing.Vienna, Austria: R Foundation for Statistical Computing, https://www.R-project.org/ (2017).
BirdLife International and NatureServe. Bird species distribution maps of the world. Cambridge, UK: BirdLife International and Arlington, VA: NatureServe (2014).
Jarzyna MA, Jetz W. Detecting the multiple facets of biodiversity. Trends Ecol. Evol. 2016;31:527–538. doi: 10.1016/j.tree.2016.04.002. PubMed DOI
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. doi: 10.1038/nature11631. PubMed DOI
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Higgins, P. J. Handbook of Australian, New Zealand and Antarctic Birds. Volume 4: Parrots to Dollarbirds. (Oxford University Press, Melbourne, Australia, 1999).
Higgins, P. J. & Davies, S. J. J. F. Handbook of Australian, New Zealand and Antarctic Birds. Volume 3: Snipe to Pigeons. (Oxford University Press, Melbourne, Australia, 1996).
Higgins, P. J. & Marchant, S. Handbook of Australian, New Zealand and Antarctic Birds. Volume 1: Ratites to Ducks. (Oxford University Press, Melbourne, Australia, 1990).
Higgins, P. J. & Marchant, S. Handbook of Australian, New Zealand and Antarctic Birds. Volume 2: Raptors to Lapwings. (Oxford University Press, Melbourne, Australia, 1993).
Higgins, P. J. & Peter, J. M. Handbook of Australian, New Zealand and Antarctic Birds. Volume 6: Pardalotes to Shrike-thrushes. (Oxford University Press, Melbourne, Australia, 2002).
Higgins, P. J., Peter, J. M. & Steele, W. K. Handbook of Australian, New Zealand and Antarctic Birds. Volume 5: Tyrant-flycatchers to Chats. (Oxford University Press, Melbourne, Australia, 2001).
Higgins, P. J. (ed.) Handbook of Australian, New Zealand and Antarctic Birds. Volume 7: Boatbill to Starlings. (Oxford University Press, Melbourne, Australia, 2006).
Tuanmu MN, Jetz W. A global 1-km concensus land-cover product for biodiversity and ecosystem modelling. Global Ecol. Biogeogr. 2014;23:1031–1045. doi: 10.1111/geb.12182. DOI
Simard, M. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021, 10.1029/2011JG001708 (2011).
Stephenson NL, et al. Rate of tree carbon accumulation increases continuously with tree size. Nature. 2014;507:90–93. doi: 10.1038/nature12914. PubMed DOI
Michaletz ST, Cheng D, Kerkhoff AJ, Enquist BJ. Convergence of terrestrial plant production across global climate gradients. Nature. 2014;512:39–43. doi: 10.1038/nature13470. PubMed DOI
Stegen JC. Variation in above-ground forest biomass across broad climatic gradients. Global Ecol. Biogeogr. 2011;20:744–754. doi: 10.1111/j.1466-8238.2010.00645.x. DOI
Attiwill, P. & Wilson, B. Ecology: An Australian perspective, 2nd ed. (Oxford University Press, Oxford, UK 2007).
Tucker CM, et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 2016;92:698–715. doi: 10.1111/brv.12252. PubMed DOI PMC
Webb CO, Ackerly DD, PcPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu. Rev. Ecol. Evol. S. 2002;33:475–505. doi: 10.1146/annurev.ecolsys.33.010802.150448. DOI
Miller ET, Farine DR, Trisos CH. Phylogenetic community structure metrics and null models: A review with new methods and software. Ecography. 2017;40:461–477. doi: 10.1111/ecog.02070. DOI
Clarke KR, Warwick RM. A further biodiversity index applicable to species lists: Variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 2001;216:265–278. doi: 10.3354/meps216265. DOI
Kembel SW. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI
Oksanen J, et al. vegan: Community Ecology Package. R package version. 2017;2:4–6.
Mason NWH, Mouillot D, Lee WG, Wilson JB. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos. 2005;111:112–118. doi: 10.1111/j.0030-1299.2005.13886.x. DOI
Villéger S, Mason NWH, Mouillot D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology. 2008;89:2290–2301. doi: 10.1890/07-1206.1. PubMed DOI
Mouchet MA, Villéger S, Mason NWH, Mouillot D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Func. Ecol. 2010;24:867–876. doi: 10.1111/j.1365-2435.2010.01695.x. DOI
Maire E, Grenouillet G, Brosse S, Villéger S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecol. Biogeogr. 2015;24:728–740. doi: 10.1111/geb.12299. DOI
Ricklefs RE. Species richness and morphological diversity of passerine birds. P. Natl. Acad. Sci. USA. 2012;109:14482–14487. doi: 10.1073/pnas.1212079109. PubMed DOI PMC
Cornwell WK, Schwilk DW, Ackerly DD. A trait-based test for habitat filtering: Convex hull volume. Ecology. 2006;87:1465–1471. doi: 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2. PubMed DOI
Laliberté E, Legendre P, Shipley BFD. Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version. 2014;1:0–12. PubMed
Mason NWH, de Bello F, Mouillot D, Pavoine S, Dray S. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J. Veg. Sci. 2013;24:794–806. doi: 10.1111/jvs.12013. DOI
Gotelli NJ. Null model analysis of species co-occurrence patterns. Ecology. 2000;81:2606–2620. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2. DOI
Shipley B. Confirmatory path analysis in a generalized multilevel context. Ecology. 2009;90:363–368. doi: 10.1890/08-1034.1. PubMed DOI
Lefcheck JS. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 2016;7:573–579. doi: 10.1111/2041-210X.12512. DOI
Davies RG. Environmental predictors of global parrot (Aves: Psittaciformes) species richness and phylogenetic diversity. Global Ecol. Biogeogr. 2007;16:220–233. doi: 10.1111/j.1466-8238.2007.00282.x. DOI
Nipperes DA, Matsen FA., IV The mean and variance of phylogenetic diversity under rarefaction. Methods Ecol. Evol. 2013;4:566–572. doi: 10.1111/2041-210X.12042. PubMed DOI PMC
Davies TJ, et al. Phylogenetic trees and the future of mammalian biodiversity. PNAS. 2008;105:11556–11563. doi: 10.1073/pnas.0801917105. PubMed DOI PMC
Pianka Eric R., Schall Jos. J. Ecological Biogeography of Australia. Dordrecht: Springer Netherlands; 1981. Species densities of Australian vertebrates; pp. 1675–1694.
Schodde, R. Origin, adaptation and evolution of birds in arid Australia in Evolution of the flora and fauna of arid Australia (eds Barker, W. R. & Greenslade, P. J. M.) 191–224 (Peacock Publications, Adelaide, Australia, 1982).
Wolf B. Global warming and avian occupancy of hot deserts; a physiological and behavioural perspective. Rev. Chil. Hist. Nat. 2000;73:395–400. doi: 10.4067/S0716-078X2000000300003. DOI
Fristoe TS. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals. PNAS. 2015;112:15934–15939. doi: 10.1073/pnas.1521662112. PubMed DOI PMC
Cahill AE. Causes of warm-edge range limits: Systematic review, proximate factors and implications for climate change. J. Biogeogr. 2014;41:429–442. doi: 10.1111/jbi.12231. DOI
Arnan X, Blüthgen N. Using ecophysiological traits to predict climatic and activity niches: Lethal temperature and water loss in Mediterranean ants. Global Ecol. Biogeogr. 2015;24:1454–1464. doi: 10.1111/geb.12363. DOI
Khaliq I, Böhning-Gaese K, Prinzinger R, Pfenninger M, Hof C. The influence of thermal tolerances on geographical ranges of endotherms. Global Ecol. Biogeogr. 2017;26:650–668. doi: 10.1111/geb.12575. DOI
McKechnie AE, Hockey PAR, Wolf BO. Feeling the heat: Australian landbirds and climate change. Emu. 2012;112:1–7. doi: 10.1071/MUv112n2_ED. DOI
Wiens JJ, Graham CH. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. S. 2005;36:519–539. doi: 10.1146/annurev.ecolsys.36.102803.095431. DOI
Norman, J. A. & Christidis, L. Invasion ecology of honeyeaters in Invasion Biology and Ecological Theory: Insights from a Continent in Transformation (eds Prins, H. H. T. & Gordon, I. J.) 83–102 (Cambridge University Press, Cambridge, UK, 2014).
Wiens JJ, Pyron RA, Moen DS. Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity. Ecol. Lett. 2011;14:643–652. doi: 10.1111/j.1461-0248.2011.01625.x. PubMed DOI
Recher HF. Bird species diversity and habitat diversity in Australia and North America. Am. Nat. 1969;103:75–80. doi: 10.1086/282583. DOI
Karr JR, Roth RR. Vegetation structure and avian diversity in several New world areas. Am. Nat. 1971;105:423–435. doi: 10.1086/282735. DOI
Cody ML. Bird diversity components in Australian Eucalyptus and north-temperate Quercus woodlands. Auk. 2001;118:443–456. doi: 10.1642/0004-8038(2001)118[0443:BDCIAE]2.0.CO;2. DOI
Wiens, J. A. Avian community ecology: An iconoclastic view in Perspectives in ornithology (eds Brush, A. H. & Clark, G. A. Jr.) 355–410 (Cambridge University Press, Cambridge, UK, 1983).
Roll U, Geffen E, Yom-Tov Y. Linking vertebrate species richness to tree canopy height on a global scale. Global Ecol. Biogeogr. 2015;24:814–825. doi: 10.1111/geb.12325. DOI
Jansson R, Rodríguez-Castañeda G, Harding LE. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution. 2013;67:1741–1755. doi: 10.1111/evo.12089. PubMed DOI
Schodde R, Christidis L. Relicts from Tertiary Australasia: Undescribed families and subfamilies of songbirds (Passeriformes) and their zoogeographic signal. Zootaxa. 2014;3786:501–522. doi: 10.11646/zootaxa.3786.5.1. PubMed DOI
Pulido-Santacrus P, Weir JT. Extinction as a driver of avian latitudinal diversity gradients. Evolution. 2016;70:860–872. doi: 10.1111/evo.12899. PubMed DOI
Pigot AL, Tobias JA, Jetz W. Energetic constraints on species coexistence in birds. PloS Biol. 2016;14:e1002407. doi: 10.1371/journal.pbio.1002407. PubMed DOI PMC
De Meester L, Vanoverbeke J, Kilsdonk LJ, Urban MC. Evolving perspectives on monopolization and priority effects. Trends Ecol. Evol. 2016;31:136–146. doi: 10.1016/j.tree.2015.12.009. PubMed DOI
Pianka Eric R. Ecological Biogeography of Australia. Dordrecht: Springer Netherlands; 1981. Diversity and adaptive radiations of Australian desert lizards; pp. 1375–1392.
Cogger, H. G. Reptiles in the Australian arid zone in Arid Australia (eds Cogger, G. H. & Cameron, E. E.) 235–252 (Australian Museum Sydney, Sydney, Australia, 1984).
Rabosky DL, Donnellan SC, Talaba AL, Lovette IJ. Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proc. R. Soc. B. 2007;274:2915–2923. doi: 10.1098/rspb.2007.0924. PubMed DOI PMC