Functional diversity of avian communities increases with canopy height: From individual behavior to continental-scale patterns

. 2021 Sep ; 11 (17) : 11839-11851. [epub] 20210727

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34522345

Vegetation complexity is an important predictor of animal species diversity. Specifically, taller vegetation should provide more potential ecological niches and thus harbor communities with higher species richness and functional diversity (FD). Resource use behavior is an especially important functional trait because it links species to their resource base with direct relevance to niche partitioning. However, it is unclear how exactly the diversity of resource use behavior changes with vegetation complexity. To address this question, we studied avian FD in relation to vegetation complexity along a continental-scale vegetation gradient. We quantified foraging behavior of passerine birds in terms of foraging method and substrate use at 21 sites (63 transects) spanning 3,000 km of woodlands and forests in Australia. We also quantified vegetation structure on 630 sampling points at the same sites. Additionally, we measured morphological traits for all 111 observed species in museum collections. We calculated individual-based, abundance-weighted FD in morphology and foraging behavior and related it to species richness and vegetation complexity (indexed by canopy height) using structural equation modeling, rarefaction analyses, and distance-based metrics. FD of morphology and foraging methods was best predicted by species richness. However, FD of substrate use was best predicted by canopy height (ranging 10-30 m), but only when substrates were categorized with fine resolution (17 categories), not when categorized coarsely (8 categories). These results suggest that, first, FD might increase with vegetation complexity independently of species richness, but whether it does so depends on the studied functional trait. Second, patterns found might be shaped by how finely we categorize functional traits. More complex vegetation provided larger "ecological space" with more resources, allowing the coexistence of more species with disproportionately more diverse foraging substrate use. We suggest that the latter pattern was driven by nonrandom accumulation of functionally distinct species with increasing canopy height.

Zobrazit více v PubMed

Aguirre‐Gutiérrez, J., WallisDeVries, M. F., Marshall, L., van't Zelfde, M., Villalobos‐Arámbula, A. R., Boekelo, B., Bartholomeus, H., Franzén, M., & Biesmeijer, J. C. (2017). Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Global Ecology and Biogeography, 26(10), 1126–1137. 10.1111/geb.12622 DOI

Allgeier, J. E., Adam, T. C., & Burkepile, D. E. (2017). The importance of individual and species‐level traits for trophic niches among herbivorous coral reef fishes. Proceedings of the Royal Society B: Biological Sciences, 284(1856), 20170307. 10.1098/rspb.2017.0307 PubMed DOI PMC

Alroy, J. (2015). The shape of terrestrial abundance distributions. Science Advances, 1(8), e1500082. 10.1126/sciadv.1500082 PubMed DOI PMC

Barnagaud, J.‐Y., Daniel Kissling, W., Sandel, B., Eiserhardt, W. L., Şekercioğlu, Ç. H., Enquist, B. J., Tsirogiannis, C., & Svenning, J.‐C. (2014). Ecological traits influence the phylogenetic structure of bird species co‐occurrences worldwide. Ecology Letters, 17(7), 811–820. 10.1111/ele.12285 PubMed DOI

Bell, H. L. (1983). A bird community of lowland rainforest in New Guinea. 6 Foraging ecology and community structure of the avifauna. Emu, 84, 142–158. 10.1071/MU9840142 DOI

Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745. 10.1111/j.0014-3820.2003.tb00285.x PubMed DOI

Blondel, J., & Farré, H. (1988). The convergent trajectories of bird communities along ecological successions in European forests. Oecologia, 75(1), 83–93. 10.1007/BF00378818 PubMed DOI

Blonder, B. (2016). Do hypervolumes have holes? The American Naturalist, 187(4), E93–E105. 10.1086/685444 PubMed DOI

Blonder, B., & Harris, D. J. (2019). hypervolume: High dimensional geometry and set operations using kernel density estimation, support vector machines, and convex hulls. R package version 2.0.12. Retrieved from https://CRAN.R‐project.org/package=hypervolume

Blonder, B., Morrow, C. B., Maitner, B., Harris, D. J., Lamanna, C., Violle, C., Enquist, B. J., & Kerkhoff, A. J. (2018). New approaches for delineating n‐dimensional hypervolumes. Methods in Ecology and Evolution, 9(2), 305–319. 10.1111/2041-210X.12865 DOI

Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, J. S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., & Weston, P. H. (2011). Decline of a biome: Evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography, 38(9), 1635–1656. 10.1111/j.1365-2699.2011.02535.x DOI

Cadotte, M. W., & Davies, T. J. (2016). Phylogenies in ecology: A guide to concepts and methods. Princeton University Press.

Cardoso, P., Rigal, F., & Carvalho, J. C. (2018). BAT: Biodiversity Assessment Tools. Retrieved from https://CRAN.R‐project.org/package=BAT

Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. 10.1890/13-0133.1 DOI

Chao, A., & Jost, L. (2012). Coverage‐based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. 10.1890/11-1952.1 PubMed DOI

Coops, N. C., Rickbeil, G. J. M., Bolton, D. K., Andrew, M. E., & Brouwers, N. C. (2018). Disentangling vegetation and climate as drivers of Australian vertebrate richness. Ecography, 41(7), 1147–1160. 10.1111/ecog.02813 DOI

Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait‐based test for habitat filtering: Convex hull volume. Ecology, 87(6), 1465–1471. PubMed

Culbert, P. D., Radeloff, V. C., Flather, C. H., Kellndorfer, J. M., Rittenhouse, C. D., & Pidgeon, A. M. (2013). The Influence of vertical and horizontal habit at structure on nationwide patterns of avian biodiversity. The Auk, 130(4), 656–665. 10.1525/auk.2013.13007 DOI

Feng, G., Zhang, J., Girardello, M., Pellissier, V., & Svenning, J. C. (2020). Forest canopy height co‐determines taxonomic and functional richness, but not functional dispersion of mammals and birds globally. Global Ecology and Biogeography, 29(8), 1350–1359. 10.1111/geb.13110 DOI

Friedman, N. R., Miller, E. T., Ball, J. R., Kasuga, H., Remeš, V., & Economo, E. P. (2019). Evolution of a multifunctional trait: Shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proceedings of the Royal Society B: Biological Sciences, 286(1917), 20192474. 10.1098/rspb.2019.2474 PubMed DOI PMC

Goslee, S. C., & Urban, D. L. (2007). The ecodist package for dissimilarity‐based analysis of ecological data. Journal of Statistical Software, 22(7), 1–19.

Gotelli, N. J. (2008). A primer of ecology (4th edn.). Sinauer Associates.

Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão‐Mendes, R., & Ferrari, S. F. (2014). Forest structure drives global diversity of primates. Journal of Animal Ecology, 83(6), 1523–1530. 10.1111/1365-2656.12241 PubMed DOI

Harmáčková, L., Remešová, E., & Remeš, V. (2019). Specialization and niche overlap across spatial scales: Revealing ecological factors shaping species richness and coexistence in Australian songbirds. Journal of Animal Ecology, 88(11), 1766–1776. 10.1111/1365-2656.13073 PubMed DOI

Higgins, P. J., Peter, J. M., Steele, W. K., & Cowling, S. J. (2006). Handbook of Australian, New Zealand and Antarctic Birds (Vol. 5–7). Oxford University Press.

Holmes, R. T., Bonney, R. E. J., & Pacala, S. W. (1979). Guild structure of the Hubbard Brook bird community: A multivariate approach. Ecology, 60(3), 512–520. 10.2307/1936071 DOI

Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. 10.1111/2041-210X.12613 DOI

Hutchinson, G. E. (1959). Homage to Santa Rosalia or Why are there so many kinds of animals? The American Naturalist, 93(870), 145–159. 10.1086/282070 DOI

Ilsøe, S. K., Kissling, W. D., Fjeldså, J., Sandel, B., & Svenning, J. C. (2017). Global variation in woodpecker species richness shaped by tree availability. Journal of Biogeography, 44(8), 1824–1835. 10.1111/jbi.13009 DOI

James, F. C., & Wamer, N. O. (1982). Relationships between temperate forest bird communities and vegetation structure. Ecology, 63(1), 159–171. 10.2307/1937041 DOI

Jankowski, J. E., Merkord, C. L., Rios, W. F., Cabrera, K. G., Revilla, N. S., & Silman, M. R. (2013). The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. Journal of Biogeography, 40(5), 950–962. 10.1111/jbi.12041 DOI

Jiménez‐Alfaro, B., Chytrý, M., Mucina, L., Grace, J. B., & Rejmánek, M. (2016). Disentangling vegetation diversity from climate‐energy and habitat heterogeneity for explaining animal geographic patterns. Ecology and Evolution, 6(5), 1515–1526. 10.1002/ece3.1972 PubMed DOI PMC

Jonsson, K. A., Fabre, P.‐H., Fritz, S. A., Etienne, R. S., Ricklefs, R. E., Jorgensen, T. B., Fjeldsa, J., Rahbek, C., Ericson, P. G. P., Woog, F., Pasquet, E., & Irestedt, M. (2012). Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proceedings of the National Academy of Sciences of the United States of America, 109(17), 6620–6625. 10.1073/pnas.1115835109 PubMed DOI PMC

Korňan, M., Holmes, R. T., Recher, H. F., Adamík, P., & Kropil, R. (2013). Convergence in foraging guild structure of forest breeding bird assemblages across three continents is related to habitat structure and foraging opportunities. Community Ecology, 14(1), 89–100. 10.1556/ComEc.14.2013.1.10 DOI

Krebs, C. (1999). Ecological methodology (2nd edn.). Addison Wesley.

Lack, D. (1971). Ecological isolation in birds. Blackwell.

Lefcheck, J. S. (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5), 573–579. 10.1111/2041-210X.12512 DOI

Legendre, P., Borcard, D., & Peres‐Neto, P. R. (2005). Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75(4), 435–450. 10.1890/05-0549 DOI

MacArthur, R. H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology, 39(4), 599–619. 10.2307/1931600 DOI

MacArthur, R. H., & MacArthur, J. W. (1961). On bird species diversity. Ecology, 42(3), 594–598. 10.2307/1932254 DOI

Maire, E., Grenouillet, G., Brosse, S., & Villéger, S. (2015). How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Global Ecology and Biogeography, 24(6), 728–740. 10.1111/geb.12299 DOI

McGill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21(4), 178–185. 10.1016/j.tree.2006.02.002 PubMed DOI

Miller, E. T., Wagner, S. K., Harmon, L. J., & Ricklefs, R. E. (2017). Radiating despite a lack of character: Ecological divergence among closely related, morphologically similar honeyeaters (Aves: Meliphagidae) co‐occurring in arid Australian environments. The American Naturalist, 189(2), E14–E30. 10.1086/690008 PubMed DOI

Morrison, M. L., Ralph, C. J., Verner, J., & Jehl, J. R. J. (1990). Avian foraging: Theory, methodology, and applications. Cooper Ornithological Society.

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community Ecology Package. R Package version 2.5‐7. Retrieved from https://CRAN.R‐project.org/package=vegan

Oliveira, B. F., & Scheffers, B. R. (2019). Vertical stratification influences global patterns of biodiversity. Ecography, 42(2), 249–258. 10.1111/ecog.03636 DOI

Pakeman, R. J. (2014). Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution, 5(1), 9–15. 10.1111/2041-210X.12136 DOI

Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioğlu, Ç., & Svenning, J. C. (2018). Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Global Ecology and Biogeography, 27(5), 604–615. 10.1111/geb.12723 DOI

Pianka, E. R. (1986). Ecology and natural history of desert lizards. Princeton University Press.

Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2021). nlme: Linear and nonlinear mixed effects models. R Package version 3.1‐149. Retrieved from https://CRAN.R‐project.org/package=nlme

Recher, H. F., & Davis, W. E.Jr (1997). Foraging ecology of a mulga bird community. Wildlife Research, 24(1), 27–43. 10.1071/WR96052 DOI

Reif, J., Marhoul, P., & Koptík, J. (2013). Bird communities in habitats along a successional gradient: Divergent patterns of species richness, specialization and threat. Basic and Applied Ecology, 14(5), 423–431. 10.1016/j.baae.2013.05.007 DOI

Remeš, V., & Harmáčková, L. (2018). Disentangling direct and indirect effects of water availability, vegetation, and topography on avian diversity. Scientific Reports, 8(1), 15475. 10.1038/s41598-018-33671-w PubMed DOI PMC

Remešová, E., Matysioková, B., Turčoková Rubáčová, L., & Remeš, V. (2020). Foraging behaviour of songbirds in woodlands and forests in eastern Australia: Resource partitioning and guild structure. Emu, 120(1), 22–32. 10.1080/01584197.2019.1644183 DOI

Ricklefs, R. E. (2012). Species richness and morphological diversity of passerine birds. Proceedings of the National Academy of Sciences of the United States of America, 109(36), 14482–14487. 10.1073/pnas.1212079109 PubMed DOI PMC

Roll, U., Geffen, E., & Yom‐Tov, Y. (2015). Linking vertebrate species richness to tree canopy height on a global scale. Global Ecology and Biogeography, 24(7), 814–825. 10.1111/geb.12325 DOI

Ronco, F., Matschiner, M., Böhne, A., Boila, A., Büscher, H. H., El Taher, A., Indermaur, A., Malinsky, M., Ricci, V., Kahmen, A., Jentoft, S., & Salzburger, W. (2021). Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature, 589(7840), 76–81. 10.1038/s41586-020-2930-4 PubMed DOI

Rosado, B. H. P., Figueiredo, M. S. L., de Mattos, E. A., & Grelle, C. E. V. (2016). Eltonian shortfall due to the Grinnellian view: Functional ecology between the mismatch of niche concepts. Ecography, 39(11), 1034–1041. 10.1111/ecog.01678 DOI

Rosenberg, K. V. (1997). Ecology of dead‐leaf foraging specialists and their contribution to Amazonian bird diversity. Ornithological Monographs, 48, 673–700. 10.2307/40157560 DOI

Ross, S. R. P. J., Hassall, C., Hoppitt, W. J. E., Edwards, F. A., Edwards, D. P., & Hamer, K. C. (2017). Incorporating intraspecific trait variation into functional diversity: Impacts of selective logging on birds in Borneo. Methods in Ecology and Evolution, 8(11), 1499–1505. 10.1111/2041-210X.12769 DOI

Sam, K., Koane, B., Bardos, D. C., Jeppy, S., & Novotny, V. (2019). Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. Journal of Biogeography, 46(2), 279–290. 10.1111/jbi.13482 DOI

Santillán, V., Quitián, M., Tinoco, B. A., Zárate, E., Schleuning, M., Böhning‐Gaese, K., & Neuschulz, E. L. (2020). Direct and indirect effects of elevation, climate and vegetation structure on bird communities on a tropical mountain. Acta Oecologica, 102, 103500. 10.1016/j.actao.2019.103500 DOI

Scherber, C., Eisenhauer, N., Weisser, W. W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.‐D., Roscher, C., Weigelt, A., Allan, E., Beßler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, L. W., Ebeling, A., Engels, C., Halle, S., Kertscher, I., … Tscharntke, T. (2010). Bottom‐up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468(7323), 553–556. 10.1038/nature09492 PubMed DOI

Schleuter, D., Daufresne, M., Massol, F., & Argillier, C. (2010). A user’s guide to functional diversity indices. Ecological Monographs, 80(3), 469–484. 10.1890/08-2225.1 DOI

Schumm, M., Edie, S. M., Collins, K. S., Gómez‐Bahamón, V., Supriya, K., White, A. E., Price, T. D., & Jablonski, D. (2019). Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proceedings of the Royal Society B: Biological Sciences, 286(1908), 20190745. 10.1098/rspb.2019.0745 PubMed DOI PMC

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel context. Ecology, 90(2), 363–368. 10.1890/08-1034.1 PubMed DOI

Sillett, T. S., James, A., & Sillett, K. B. (1997). Bromeliad foraging specialization and diet selection of pseudocolaptes lawrencii (furnariidae). Ornithological Monographs, 48, 733–742. 10.2307/40157564 DOI

Stevens, R. D., Cox, S. B., Strauss, R. E., & Willig, M. R. (2003). Patterns of functional diversity across an extensive environmental gradient: Vertebrate consumers, hidden treatments and latitudinal trends. Ecology Letters, 6(12), 1099–1108. 10.1046/j.1461-0248.2003.00541.x DOI

Terborgh, J. (1980). Causes of tropical species diversity. In Nöhring R. (Ed.), Acta XVII Congressus Internationalis Ornithologici (pp. 955–961). Verlag der Deutschen Ornithologen‐Gesellschaft.

Terborgh, J., & Robinson, S. K. (1986). Guilds and their utility in ecology. In Kikkawa J., & Anderson D. J. (Eds.), Community ecology: Pattern and process (pp. 65–90). Blackwell Scientific.

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. Journal of Biogeography, 31(1), 79–92. 10.1046/j.0305-0270.2003.00994.x DOI

Tylianakis, J. M., & Morris, R. J. (2017). Ecological networks across environmental gradients. Annual Review of Ecology, Evolution, and Systematics, 48, 25–48. 10.1146/annurev-ecolsys-110316-022821 DOI

Violle, C., Enquist, B. J., McGill, B. J., Jiang, L., Albert, C. H., Hulshof, C., Jung, V., & Messier, J. (2012). The return of the variance: Intraspecific variability in community ecology. Trends in Ecology and Evolution, 27(4), 244–252. 10.1016/j.tree.2011.11.014 PubMed DOI

Vollstädt, M. G. R., Ferger, S. W., Hemp, A., Howell, K. M., Töpfer, T., Böhning‐Gaese, K., & Schleuning, M. (2017). Direct and indirect effects of climate, human disturbance and plant traits on avian functional diversity. Global Ecology and Biogeography, 26(8), 963–972. 10.1111/geb.12606 DOI

Willson, M. F. (1974). Avian community organization and habitat structure. Ecology, 55, 1017–1029. 10.2307/1940352 DOI

Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M. M., & Jetz, W. (2014). EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals. Ecology, 95(7), 2027. 10.1890/13-1917.1 DOI

Wilson, J. B. (1999). Guilds, functional types and ecological groups. Oikos, 86(3), 507–522. 10.2307/3546655 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...