Specialization and niche overlap across spatial scales: Revealing ecological factors shaping species richness and coexistence in Australian songbirds
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31329280
DOI
10.1111/1365-2656.13073
Knihovny.cz E-zdroje
- Klíčová slova
- Australia, community assembly, niche partitioning, null models, passeriformes, spatial scales,
- MeSH
- ekologie MeSH
- ekosystém MeSH
- zpěvní ptáci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
Ecological specialization enables the partitioning of resources and thus can facilitate the coexistence of species and promote higher species richness. Specialization and niche partitioning are expected to exert a decisive influence on local spatial scales, while species richness at regional scales should be shaped mostly by historical factors and abiotic conditions. Moreover, specialization is expected to be particularly important in communities that are exceptionally species rich for their environmental conditions. Concurrently, niche overlap in these communities should be minimized to enable species coexistence. We tested these hypotheses by studying specialization-richness relationship and niche overlap in assemblages of 298 species of songbirds (Passeriformes) across Australia. We used local (2-6 ha) to regional (bioregions) spatial scales and detailed data on habitat, diet and foraging behaviour (method, substrate and stratum). We expected the richness-specialization relationship to be particularly strong (a) on local spatial scales and (b) in communities exceptionally species rich for given environmental conditions (approximated by moisture and vegetation complexity). We also expected (c) low niche overlap in assemblages with specialized species. Only the third prediction was partly supported. First, while the specialization and species richness were often positively related, the strength and the direction of the relationship changed between traits and across spatial scales. The strength of the specialization-richness relationship was consistently positive only in foraging stratum, and it increased towards smaller spatial scales only in case of habitat and diet. Simultaneously, species in local communities demonstrated high overlap in habitat and diet. Second, we did not find particularly strong specialization-richness relationships in exceptionally species-rich communities. Third, we found the expected negative relationship between specialization and overlap in foraging stratum and substrate (in local communities), suggesting that species partition ecological space locally in terms of where they find food. Our expectations were only weakly supported. Specialization on foraging stratum was probably important in facilitating species coexistence. Conversely, although species were often specialized on habitat and diet, high overlap in these traits did not preclude their local coexistence. Overall, specialization and overlap in foraging traits were more important for species coexistence than habitat or diet.
Zobrazit více v PubMed
Belmaker, J., & Jetz, W. (2011). Cross-scale variation in species richness-environment associations. Global Ecology and Biogeography, 20(3), 464-474. https://doi.org/10.1111/j.1466-8238.2010.00615.x
Belmaker, J., Sekercioglu, C. H., & Jetz, W. (2012). Global patterns of specialization and coexistence in bird assemblages. Journal of Biogeography, 39(1), 193-203. https://doi.org/10.1111/j.1365-2699.2011.02591.x
BirdLife International, & NatureServe (2014). Bird species distribution maps of the world. Cambridge, UK: BirdLife International and Arlington, VA: NatureServe.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., … Drummond, A. J. (2014). BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 10(4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Brändle, M., Prinzing, A., Pfeifer, R., & Brandl, R. (2002). Dietary niche breadth for Central European birds: Correlations with species-specific traits. Evolutionary Ecology Research, 4, 643-657.
Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., … Weston, P. H. (2011). Decline of a biome: Evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography, 38(9), 1635-1656. https://doi.org/10.1111/j.1365-2699.2011.02535.x
Chao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547. https://doi.org/10.1890/11-1952.1
Clarke, M. F. (1999). Australian bird count: Where do all the bush birds go? Wingspan, 9, 1-16.
Department of the Environment (2012). Interim Biogeographic Regionalisation for Australia (Regions - States and Territories) v. 7 (IBRA). Retrieved from http://www.environment.gov.au/land/nrs/science/ibra
Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., … Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology, 47(1), 15-25. https://doi.org/10.1111/j.1365-2664.2009.01744.x
Eeley, H. A. C., & Foley, R. A. (1999). Species richness, species range size and ecological specialization among African primates: Geographical patterns and conservation implications. Biodiversity & Conservation, 8(8), 1033-1056.
Evans, K. L., Jackson, S. F., Greenwood, J. D., & Gaston, K. J. (2006). Species traits and the form of individual species-energy relationships. Proceedings of the Royal Society B, 273(1595), 1779-1787. https://doi.org/10.1098/rspb.2006.3487
Ferger, S. W., Schleuning, M., Hemp, A., Howell, K. M., & Böhning-Gaese, K. (2014). Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecology and Biogeography, 23(5), 541-549. https://doi.org/10.1111/geb.12151
Fergnani, P. N., & Ruggiero, A. (2017). The latitudinal diversity gradient in South American mammals revisited using a regional analysis approach: The importance of climate at extra-tropical latitudes and history towards the tropics. PLoS ONE, 12(9), e0184057. https://doi.org/10.1371/journal.pone.0184057
Futuyma, D. J., & Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics, 19, 207-233. https://doi.org/10.1146/annurev.es.19.110188.001231
Harmáčková, L., Remešová, E., & Remeš, V. (2019). Data from: Specialization and niche overlap across spatial scales: Revealing ecological factors shaping species richness and coexistence in Australian songbirds. Dryad Digital Repository, https://doi.org/10.5061/dryad.79v0d8r
Hawkins, B. A., Diniz-Filho, J. A. F., & Soeller, S. A. (2005). Water links the historical and contemporary components of the Australian bird diversity gradient. Journal of Biogeography, 31(6), 1035-1042. https://doi.org/10.1111/j.1365-2699.2004.01238.x
Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., … Turner, J. R. G. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84(12), 3105-3117. https://doi.org/10.1890/03-8006
Higgins, P. J., & Peter, J. M. (2002). Handbook of Australian, New Zealand and Antarctic birds. Volume 6: Pardalotes to Shrike-thrushes. Melbourne, Vic.: Oxford University Press.
Higgins, P. J., Peter, J. M., & Cowling, S. J. (2006). Handbook of Australian, New Zealand and Antarctic birds. Volume 7: Boatbill to Starlings. Melbourne, Vic.: Oxford University Press.
Higgins, P. J., Peter, J. M., & Steele, W. K. (2001). Handbook of Australian, New Zealand and Antarctic birds. Volume 5: Tyrant-flycatchers to Chats. Melbourne, Vic.: Oxford University Press.
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456. https://doi.org/10.1111/2041-210X.12613
Hurlbert, A. H. (2004). Species-energy relationships and habitat complexity in bird communities. Ecology Letters, 7(8), 714-720. https://doi.org/10.1111/j.1461-0248.2004.00630.x
Hutchinson, G. E. (1959). Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93(870), 145-159. https://doi.org/10.1086/282070
Jablonski, P., & Lee, S. D. (1998). Foraging niche differences between species are correlated with body-size differences in mixed-species flocks near Seoul. Korea. Ornis Fennica, 76(1), 17-23.
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491, 444-448. https://doi.org/10.1038/nature11631
Julliard, R., Clavel, J., Devictor, V., Jiguet, F., & Couvet, D. (2006). Spatial segregation of specialists and generalists in bird communities. Ecology Letters, 9(11), 1237-1244. https://doi.org/10.1111/j.1461-0248.2006.00977.x
Koenker, R. (2018). quantreg: Quantile regression. R Package Version 5.36.
Lack, D. (1971). Ecological isolation in birds. Oxford and Edinburgh, UK: Blackwell Scientific Publications.
Leibold, M. A., & Chase, J. M. (2018). Metacommunity ecology. Princeton and Oxford, UK: Princeton UP.
MacArthur, R. H. (1958). Population ecology of some warblers of northeastern coniferous forests. Ecology, 39(4), 599-619. https://doi.org/10.2307/1931600
MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews, 40(4), 510-533. https://doi.org/10.1111/j.1469-185X.1965.tb00815.x
MacArthur, R. H. (1972). Geographical ecology: Patterns in the distribution of species. New York, NY: Harper and Row.
Mangiafico, S. S. (2016). Summary and analysis of extension program evaluation in R, version 1.13.4 rcompanion.org/handbook/.
Mason, N. W., Irz, P., Lanoiselée, C., Mouillot, D., & Argillier, C. (2008). Evidence that niche specialization explains species-energy relationships in lake fish communities. Journal of Animal Ecology, 77(2), 285-296. https://doi.org/10.1111/j.1365-2656.2007.01350.x
Miller, E. T., Zanne, A. E., & Ricklefs, R. E. (2013). Niche conservatism constrains Australian honeyeater assemblages in stressful environments. Ecology Letters, 16(9), 1186-1194. https://doi.org/10.1111/ele.12156
Pellissier, V., Barnagaud, J.-Y., Kissling, W. D., Sekercioglu, C., & Svenning, J.-C. (2018). Niche packing and expansion account for species richness-productivity relationships in global bird assemblages. Global Ecology and Biogeography, 27(5), 604-615. https://doi.org/10.1111/geb.12723
Penone, C., Davidson, A. D., Shoemaker, K. T., Di Marco, M., Rondinini, C., Brooks, T. M., … Costa, G. C. (2014). Imputation of missing data in life-history trait datasets: Which approach performs the best? Methods in Ecology and Evolution, 5(9), 961-970. https://doi.org/10.1111/2041-210X.12232
Pianka, E. R. (1973). The structure of lizard communities. Annual Review of Ecology, Evolution, and Systematics, 4, 53-74. https://doi.org/10.1146/annurev.es.04.110173.000413
Pigot, A. L., Trisos, C. H., & Tobias, J. A. (2016). Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proceedings of the Royal Society B, 283(1822), 20152013. https://doi.org/10.1098/rspb.2015.2013
Pineda-Munoz, S., Evans, A. R., & Alroy, J. (2016). The relationship between diet and body mass in terrestrial mammals. Paleobiology, 42(4), 659-669. https://doi.org/10.1017/pab.2016.6
R Core Development Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from: https://www.R-project.org
Reif, J., Hořák, D., Krištín, A., Kopsová, L., & Devictor, V. (2015). Linking habitat specialization with species’ traits in European birds. Oikos, 125(3), 405-413. https://doi.org/10.1111/oik.02276
Remeš, V., & Harmáčková, L. (2018). Disentangling direct and indirect effects of water availability, vegetation, and topography on avian diversity. Scientific Reports, 8, 15475. https://doi.org/10.1038/s41598-018-33671-w
Ricklefs, R. E. (2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7(1), 1-15. https://doi.org/10.1046/j.1461-0248.2003.00554.x
Ricklefs, R. E. (2006). Evolutionary diversification and the origin of the diversity-environment relationship. Ecology, 87(7), S3-S13. https://doi.org/10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2
Ricklefs, R. E. (2008). Disintegration of the ecological community. The American Naturalist, 172(6), 741-750. https://doi.org/10.1086/593002
Royan, A., Reynolds, S. J., Hannah, D. M., Prudhomme, C., Noble, D. G., & Sadler, J. P. (2016). Shared environmental responses drive co-occurrence patterns in river bird communities. Ecography, 39(8), 733-742. https://doi.org/10.1111/ecog.01703
Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., & Hemingway, H. (2014). Comparison of random forest and parametric imputation models for imputing missing data using MICE: A CALIBER study. American Journal of Epidemiology, 179(6), 764-774. https://doi.org/10.1093/aje/kwt312
Stekhoven, D. J., & Bühlmann, P. (2012). MissForest - non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118. https://doi.org/10.1093/bioinformatics/btr597
Suhonen, J., Alatalo, R. V., & Gustafsson, L. (1994). Evolution of foraging ecology in Fennoscandian tits (Parus spp.). Proceedings of the Royal Society B, 258(1352), 127-131. https://doi.org/10.1098/rspb.1994.0152
TERN (2018). AusCover. Retrieved from http://auscover.org.au
The Atlas of Living Australia (2018). Retrieved from http://www.ala.org.au
Tokeshi, M., & Schmid, P. E. (2002). Niche division and abundance: An evolutionary perspective. Population Ecology, 44(3), 189-200. https://doi.org/10.1007/s101440200022
Whittaker, R. J., Willis, K. J., & Field, R. (2001). Scale and species richness: Towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28(4), 453-470. https://doi.org/10.1046/j.1365-2699.2001.00563.x
Wiens, J. J., Kozak, K. H., & Silva, N. (2013). Diversity and niche evolution along aridity gradients in North American lizards (Phrynosomatidae). Evolution, 67(6), 1715-1728. https://doi.org/10.1111/evo.12053
Dryad
10.5061/dryad.79v0d8r