The sublethal effects of neonicotinoids on spiders are independent of their nutritional status
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33875743
PubMed Central
PMC8055996
DOI
10.1038/s41598-021-87935-z
PII: 10.1038/s41598-021-87935-z
Knihovny.cz E-zdroje
- MeSH
- Drosophila melanogaster účinky léků fyziologie MeSH
- insekticidy toxicita MeSH
- lipidy analýza MeSH
- neonikotinoidy toxicita MeSH
- nutriční stav * MeSH
- pavouci účinky léků fyziologie MeSH
- proteiny členovců metabolismus MeSH
- tělesná hmotnost MeSH
- testy toxicity metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- insekticidy MeSH
- lipidy MeSH
- neonikotinoidy MeSH
- proteiny členovců MeSH
Spiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of β-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.
3rd Faculty of Medicine Charles University Ruská 87 100 00 Prague Czech Republic
Crop Research Institute Prague Czech Republic
Department of Integrative Biology Oklahoma State University Stillwater OK USA
Zobrazit více v PubMed
Holmstrum P, et al. Interactions between effects of environmental chemicals and natural stressors: A review. Sci. Total Environ. 2010;408:3746–3762. doi: 10.1016/j.scitotenv.2009.10.067. PubMed DOI
Wahl O, Ulm K. Influence of pollen feeding and physiological condition on pesticide sensitivity of the honey bee Apis mellifera carnica. Oecologia. 1983;59:106–128. doi: 10.1007/BF00388082. PubMed DOI
Schmehl DR, Teal PEA, Frazier JL, Grozinger CM. Genomic analysis of the interaction between pesticide exposure and nutrition in honey bees (Apis mellifera) J. Insect Physiol. 2014;71:177–190. doi: 10.1016/j.jinsphys.2014.10.002. PubMed DOI
Tosi S, Nieh JC, Sgolastra F, Cabbri R, Medrzycki P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. Biol. Sci. 2017;284:20171711. PubMed PMC
Stuligross C, Williams NM. Pesticide and resource stressors additively impair wild bee reproduction. Proc. Biol. Sci. 2020;287:20201390. PubMed PMC
Liess M, Foit K, Knillmann S, Schäfer RB, Liess H-D. Predicting the synergy of multiple stress effects. Sci. Rep. 2016;6:32965. doi: 10.1038/srep32965. PubMed DOI PMC
Goulson D, Nicholls E, Botias C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 2015;347:1255957. doi: 10.1126/science.1255957. PubMed DOI
Simpson SJ, Raubenheimer D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity. Princeton University Press; 2012.
Simpson SJ, Le Couteur DG, Raubenheimer D. Putting the balance back in diet. Cell. 2015;161:18–23. doi: 10.1016/j.cell.2015.02.033. PubMed DOI
Wise D. Food limitation of the spider Linyphia marginata: Experimental field studies. Ecology. 1975;56:637–646. doi: 10.2307/1935497. DOI
Bilde T, Toft S. Quantifying food limitation of arthropod predators in the field. Oecologia. 1998;115:54–58. doi: 10.1007/s004420050490. PubMed DOI
Wilder SM, Rypstra A. Diet quality affects mating behaviour and egg production in a wolf spider. Anim. Behav. 2008;76:439–445. doi: 10.1016/j.anbehav.2008.01.023. DOI
Tanaka K, Itô Y. Decrease in respiratory rate in a wolf spider, Pardosa astrigera (L. Koch), under starvation. Res. Popul. Ecol. 1982;24:360–374. doi: 10.1007/BF02515582. DOI
O'Connor KI, Taylor AC, Metcalfe NB. The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmon. J. Fish Biol. 2000;57:41–51. doi: 10.1111/j.1095-8649.2000.tb00774.x. DOI
McCue MD. Specific dynamic action: A century of investigation. Comp. Biochem. Physiol. A. 2006;144:381394. doi: 10.1016/j.cbpa.2006.03.011. PubMed DOI
Secor SM. Specific dynamic action: A review of the postprandial metabolic response. J. Comp. Physiol. B. 2009;179:1–56. doi: 10.1007/s00360-008-0283-7. PubMed DOI
Van Leeuwen TE, Rosenfeld JS, Richards JG. Effects of food ration on SMR: Influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch) J. Anim. Ecol. 2012;81:395–402. doi: 10.1111/j.1365-2656.2011.01924.x. PubMed DOI
Parthasarathy B, Somanathan H. Body condition and food shapes group dispersal but not solitary dispersal in a social spider. Behav. Ecol. 2018;29:619–627. doi: 10.1093/beheco/ary013. DOI
Koemel NA, Barnes CL, Wilder SM. Metabolic and behavioral responses of predators to prey nutrient content. J. Insect Physiol. 2019;116:25–31. doi: 10.1016/j.jinsphys.2019.04.006. PubMed DOI
Řezáč M, Řezáčová V, Heneberg P. Neonicotinoid insecticides limit the potential of spiders to re-colonize disturbed agroecosystems when using silk-mediated dispersal. Sci. Rep. 2019;9:12272. doi: 10.1038/s41598-019-48729-6. PubMed DOI PMC
Řezáč M, Řezáčová V, Heneberg P. Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induces paralysis of common farmland spiders. Sci. Rep. 2019;9:5724. doi: 10.1038/s41598-019-42258-y. PubMed DOI PMC
Fagan WF, et al. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 2002;160:784–802. doi: 10.1086/343879. PubMed DOI
Raubenheimer D, Mayntz D, Simpson SJ, Tøft S. Nutrient-specific compensation following diapause in a predator: Implications for intraguild predation. Ecology. 2007;88:2598–2608. doi: 10.1890/07-0012.1. PubMed DOI
Lease HM, Wolf BO. Exoskeletal chitin scales iso¬metrically with body size in terrestrial insects. J. Morphol. 2010;271:759–768. PubMed
Wilder SM, Norris M, Lee RW, Raubenheimer D, Simpson SJ. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 2013;16:895–902. doi: 10.1111/ele.12116. PubMed DOI
Salomon M, Mayntz D, Lubin Y. Colony nutrition skews reproduction in a social spider. Behav. Ecol. 2008;19:605–611. doi: 10.1093/beheco/arn008. DOI
Jensen K, Mayntz D, Wang T, Simpson SJ, Overgaard J. Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. J. Insect Physiol. 2010;56:1095–1100. doi: 10.1016/j.jinsphys.2010.03.001. PubMed DOI
Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ. Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim. Behav. 2011;81:993–999. doi: 10.1016/j.anbehav.2011.01.035. DOI
Wiggins WD, Wilder SM. Mismatch between dietary requirements for lipid by a predator and availability of lipid in prey. Oikos. 2018;127:1024–1032. doi: 10.1111/oik.04766. DOI
Uetz GW, Bischoff J, Raver J. Survivorship of wolf spiders (Lycosidae) reared on different diets. J. Arachnol. 1992;20:207–211.
Sigsgaard L, Toft S, Villareal S. Diet-dependent survival, development and fecundity of the spider Atypena formosana (Oi) (Araneae: Linyphiidae) implications for biological control in rice. Biocontrol Sci. Technol. 2001;11:233–244. doi: 10.1080/09583150120035657. DOI
Fisker EN, Toft S. Effects of chronic exposure to a toxic prey in a generalist predator. Physiol. Entomol. 2004;29:129–138. doi: 10.1111/j.1365-3032.2004.00376.x. DOI
Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ. Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories. Oecologia. 2011;165:577–583. doi: 10.1007/s00442-010-1811-1. PubMed DOI
Wilder SM. Spider nutrition: An integrative perspective. Adv. Insect Physiol. 2011;40:87–136. doi: 10.1016/B978-0-12-387668-3.00002-7. DOI
Barnes CL, Hawlena D, Wilder SM. Predators buffer the effects of variation in prey nutrient content for nutrient deposition. Oikos. 2019;128:360–367. doi: 10.1111/oik.05685. DOI
Jensen K, et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B. 2012;279:2212–2218. doi: 10.1098/rspb.2011.2410. PubMed DOI PMC
Toft S, Macías-Hernández N. Metabolic adaptations for isopod specialization in three species of Dysdera spiders from the Canary Islands. Physiol. Entomol. 2017;42:191–198. doi: 10.1111/phen.12192. DOI
Barry KL, Wilder SM. Macronutrient intake affects reproduction of a predatory insect. Oikos. 2013;122:1058–1064. doi: 10.1111/j.1600-0706.2012.00164.x. DOI
Wilder SM, Schneider JM. Micronutrient consumption by female Argiope bruennichi affects offspring survival. J. Insect Physiol. 2017;100:128–132. doi: 10.1016/j.jinsphys.2017.06.007. PubMed DOI
Demaree SR, Gilbert CD, Mersmann HJ, Smith SB. Conjugated linoleic acid differentially modifies fatty acid composition in subcellular fractions of muscle and adipose tissue but not adiposity of postweaning pigs. J. Nutr. 2002;132:3272–3279. doi: 10.1093/jn/132.11.3272. PubMed DOI
Nagao K, Yanagita T. Conjugated fatty acids in food and their health benefits. J. Biosci. Bioeng. 2005;100:152–157. doi: 10.1263/jbb.100.152. PubMed DOI
Hennessy AA, Ross PR, Fitzgerald GF, Stanton C. Sources and bioactive properties of conjugated dietary fatty acids. Lipids. 2016;51:377–397. doi: 10.1007/s11745-016-4135-z. PubMed DOI
Hawley J, Simpson SJ, Wilder SM. Effects of prey macronutrient content on body composition and nutrient intake in a web-building spider. PLoS ONE. 2014;9:e99165. doi: 10.1371/journal.pone.0099165. PubMed DOI PMC
Whitehorn PR, O’Connor S, Wackers FL, Goulson D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 2012;336:351–352. doi: 10.1126/science.1215025. PubMed DOI
Dicks L. Bees, lies and evidence-based policy. Nature. 2013;494:283. doi: 10.1038/494283a. PubMed DOI
Rundlöf M, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature. 2015;521:77–80. doi: 10.1038/nature14420. PubMed DOI
Tsvetkov N, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science. 2017;356:1395–1397. doi: 10.1126/science.aam7470. PubMed DOI
Woodcock BA, et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science. 2017;356:1393–1395. doi: 10.1126/science.aaa1190. PubMed DOI
Song F, et al. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata. Insect Biochem. Mol. Biol. 2009;39:833–841. doi: 10.1016/j.ibmb.2009.09.009. PubMed DOI
Korenko S, Sýkora J, Řezáč M, Heneberg P. Neonicotinoids suppress contact chemoreception in a common farmland spider. Sci. Rep. 2020;10:7019. doi: 10.1038/s41598-020-63955-z. PubMed DOI PMC
Benamú M, et al. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. Chemosphere. 2017;181:241–249. doi: 10.1016/j.chemosphere.2017.04.079. PubMed DOI
Korenko S, Saska P, Kysilková K, Řezáč M, Heneberg P. Prey contaminated with neonicotinoids induces feeding deterrent behavior of a common farmland spider. Sci. Rep. 2019;9:15895. doi: 10.1038/s41598-019-52302-6. PubMed DOI PMC
Park Y, et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 2013;61:255–259. doi: 10.1021/jf3039814. PubMed DOI
Sun Q, et al. Imidacloprid promotes high fat diet-induced adiposity in female C57BL/6J mice and enhances adipogenesis in 3T3-L1 adipocytes via the AMPKα-mediated pathway. J. Agric. Food Chem. 2017;65:6572–6581. doi: 10.1021/acs.jafc.7b02584. PubMed DOI PMC
Sun Q, et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J. Agric. Food Chem. 2016;64:9293–9306. doi: 10.1021/acs.jafc.6b04322. PubMed DOI PMC
McCluney KE, Sabo JL. Water availability directly determines per capita consumption at two trophic levels. Ecology. 2009;90:1463–1469. doi: 10.1890/08-1626.1. PubMed DOI
McCluney KE, Sabo JL. Tracing water sources of terrestrial animal populations with stable isotopes: Laboratory tests with crickets and spiders. PLoS ONE. 2010;5:e15696. doi: 10.1371/journal.pone.0015696. PubMed DOI PMC
Leinbach IL, McCluney KE, Sabo JL. Predator water balance alters intraguild predation in a streamside food web. Ecology. 2019;100:e02635. doi: 10.1002/ecy.2635. PubMed DOI
Noldus LP, Spink AJ, Tegelenbosch RA. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 2001;33:398–414. doi: 10.3758/BF03195394. PubMed DOI
Pétillon JJ, Deruytter D, Decae A, Renault D, Bonte D. Habitat use, but not dispersal limitations, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim. Biol. 2012;62:181–192. doi: 10.1163/157075611X617094. DOI
Radwan MA, Mohamed MS. Imidacloprid induced alterations in enzyme activities and energy reserves of the land snail, Helix aspersa. Ecotoxicol. Environ. Saf. 2013;95:91–97. doi: 10.1016/j.ecoenv.2013.05.019. PubMed DOI
Ribeiro S, Sousa JP, Nogueira AJA, Soares AMVM. Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus. Ecotoxicol. Environ. Saf. 2001;49:131–138. doi: 10.1006/eesa.2001.2045. PubMed DOI
Rambabu PJ, Rao MB. Effect of an organochlorine and three organophosphate pesticides on glucose, glycogen, lipid and protein contents in tissues of the freshwater snail, Bellamya dissimilis (Müller) Bull. Environ. Contam. Toxicol. 1994;53:142–148. PubMed
Dutra BK, Fernandes FA, Lauffer AL, Oliveira GT. Carbofuran-induced alterations in the energy metabolism and reproductive behaviors of Hyalella castroi (Crustacea, Amphipoda) Comp. Biochem. Physiol. Part C. 2009;149:640–646. PubMed
Messiad R, Habes D, Soltani N. Reproductive effects of a neonicotinoid insecticide (Imidacloprid) in the German Cockroaches Blattella germanica L. (Dictyoptera, Blattellidae) J. Entomol. Zool. Stud. 2015;3:1–6.
Abdelsalam SA, Alzahrani AM, Elmenshawy OM, Sedky A, Abdel-Moneim AM. Biochemical and ultrastructural changes in the ovaries of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) following acute imidacloprid poisoning. J. Asia Pac. Entomol. 2020;23:709–714. doi: 10.1016/j.aspen.2020.05.010. DOI
Tufi S, Stel JM, De Boer J, Lamoree MH, Leonards PEG. Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ. Sci. Technol. 2015;49:14529–14536. doi: 10.1021/acs.est.5b03282. PubMed DOI
Ewere EE, Reichelt-Brushett A, Benkerndorff K. Imidacloprid and formulated product impacts the fatty acids and enzymatic activities in tissues of Sydney rock oysters, Saccostrea glomerata. Mar. Environ. Res. 2019;151:104765. doi: 10.1016/j.marenvres.2019.104765. PubMed DOI
Capowiez Y, Rault M, Mazzia C, Belzunces L. Earthworm behavior as a biomarker: A case study using imidacloprid. Pedobiologia. 2003;47:542–547.
Drobne D, et al. Toxicity of imidacloprid to the terrestrial isopod Porcellio scaber (Isopoda, Crustacea) Chemosphere. 2008;71:1326–1334. doi: 10.1016/j.chemosphere.2007.11.042. PubMed DOI