Contact exposure to neonicotinoid insecticides temporarily suppresses the locomotor activity of Pardosa lugubris agrobiont wolf spiders
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36042361
PubMed Central
PMC9427997
DOI
10.1038/s41598-022-18842-0
PII: 10.1038/s41598-022-18842-0
Knihovny.cz E-zdroje
- MeSH
- dusíkaté sloučeniny toxicita MeSH
- insekticidy * toxicita MeSH
- lokomoce MeSH
- neonikotinoidy toxicita MeSH
- pavouci * MeSH
- thiamethoxam farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusíkaté sloučeniny MeSH
- insekticidy * MeSH
- neonikotinoidy MeSH
- thiamethoxam MeSH
Exposure to numerous chemicals disrupts the spiders' locomotion. Spiders, particularly epigeic spiders, are dependent on their locomotory activities to search for prey, hide from their enemies, and perform sexual reproduction and subsequent parental care. Among the best-known compounds that inhibit the locomotion of arthropods are neonicotinoids. Despite spiders are less affected by the neonicotinoids than insects due to the sequence differences in their acetylcholine receptors, they are not resistant to these compounds. We hypothesized that acute exposure to a broad spectrum of neonicotinoids suppresses the traveled distance, mean velocity, and maximum velocity in epigeic spiders. As a model species, we used adults of Pardosa lugubris. We tested commercial formulations of thiamethoxam, acetamiprid, and thiacloprid. We tested each of the neonicotinoids in the maximum and minimum concentrations recommended for foliar applications. We applied them under controlled conditions dorsally by spraying them directly on the spiders or exposing the spiders to the tarsal contact with neonicotinoid residues. Control groups consisted of 31 individuals; treated groups consisted of 10-21 individuals. We found that a broad spectrum of neonicotinoids temporarily suppresses the traveled distance in epigeic spiders. At 1 h after application, all the three tested neonicotinoid insecticides induced declines in the traveled distance, but this effect mostly disappeared when tested at 24 h after the application. The decrease in the traveled distance was associated with substantial temporary decreases in the mean and maximum velocities. Despite differences among modalities, all three insecticides caused multiple adverse effects on the locomotory parameters in any tested concentrations. It remains to test what would be the lowest safe concentration for the chronic exposure to neonicotinoids in epigeic spiders.
Zobrazit více v PubMed
Nyffeler M, Sunderland KD. Composition, abundance and pest control potential of spider communities in agroecosystems: A comparison of European and US studies. Agricult. Ecosyst. Environ. 2003;95:579–612. doi: 10.1016/S0167-8809(02)00181-0. DOI
Tóth F, Kiss J. Comparative analyses of epigeic spider assemblages in northern Hungarian winter wheat fields and their adjacent margins. J. Arachnol. 1999;27:241–248.
Kromp B, Steinberger KH. Grassy field margins and arthropod diversity: A case study on ground beetles and spiders in eastern Austria (Coleoptera: Carabidae; Arachnida: Aranei, Opiliones) Agric. Ecosyst. Environ. 1992;40:71–93. doi: 10.1016/0167-8809(92)90085-P. DOI
Nyffeler M, Benz G. Feeding ecology and predatory importance of wolf spiders (Pardosa spp.) (Araneae, Lycosidae) in winter wheat fields. J. Appl. Entomol. 1988;106:123–134. doi: 10.1111/j.1439-0418.1988.tb00575.x. DOI
Kajak A. Effects of epigeic macroarthropods on grass litter decomposition in a mown meadow. Agric. Ecosyst. Environ. 1997;64:53–63. doi: 10.1016/S0167-8809(96)01125-5. DOI
Schmidt MH, Thewes U, Thies C, Tscharntke T. Aphid suppression by natural enemies in mulched cereals. Entomol. Exp. Appl. 2014;113:87–93. doi: 10.1111/j.0013-8703.2004.00205.x. DOI
Birkhofer K, et al. Custorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 2008;98:249–255. doi: 10.1017/S0007485308006019. PubMed DOI
Desneux N, et al. Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J. Econ. Entomol. 2005;98:9–17. doi: 10.1093/jee/98.1.9. PubMed DOI
Schaafsma A, Limay-Rios V, Xue Y, Smith J, Baute T. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem. 2016;35:295–302. doi: 10.1002/etc.3231. PubMed DOI
The Xerces Society for Invertebrate Conservation. Are neonicotinoids killin bees? A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for action. The Xerces Society for Invertebrate Conservation, Portland (2012).
Liang H-Y, et al. Sublethal effect of spirotetramat on the life table and population growth of Frankliniella occidentalis (Thysanoptera: Thripidae) Entomol. Gen. 2021;41:219–231. doi: 10.1127/entomologia/2020/0902. DOI
Ullah F, Gul H, Desneux N, Gao X, Song D. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol. Gen. 2019;39:325–337. doi: 10.1127/entomologia/2019/0892. DOI
Malaj E, Morrissey CA. Increased reliance on insecticide applications in Canada is linked to simplified agricultural landscapes. Ecol. Appl. 2022;32:e2533. doi: 10.1002/eap.2533. PubMed DOI
Paula DP, Lozano RE, Menger J, Andow DA, Koch RL. Identification of point mutations related to pyrethroid resistance in voltage-gated sodium channel genes in Aphis glycines. Entomol. Gen. 2021;41:243–255. doi: 10.1127/entomologia/2021/1226. DOI
Shah FM, et al. Action threshold development in cabbage pest management using synthetic and botanical insecticides. Entomol. Gen. 2020;40:157–172. doi: 10.1127/entomologia/2020/0904. DOI
Everts JW, et al. The toxic effect of deltamethrin on linyphiid and erigonid spiders in connection with ambient temperature, humidity, and predation. Arch. Environ. Contam. Toxicol. 1991;20:20–24. doi: 10.1007/BF01065323. PubMed DOI
Shaw EM, Waddicor M, Langan AM. Impact of cypermethrin on feeding behavior and mortality of the spider Pardosa amentata in arenas with artificial "vegetation". Pest Manag. Sci. 2006;62:64–68. doi: 10.1002/ps.1136. PubMed DOI
Baatrup E, Bayley M. Effects of the pyrethroid insecticide cypermethrin on the locomotor activity of the wolf spider Pardosa amentata: quantitative analysis employing computer-automated video tracking. Ecotoxicol. Environ. Saf. 1993;26:138–152. doi: 10.1006/eesa.1993.1046. PubMed DOI
Shaw EM, Wheater CP, Langan AM. The effects of cypermethrin on Teuiphantes tenuis (Blackwall, 1852): development of a technique for assessing the impact of pesticides on web building in spiders (Araneae: Linyphiidae) Acta Zool. Bulg. 2005;Suppl. 1:173–179.
Pekár S, Beneš J. Aged pesticide residues are detrimental to agrobiont spiders (Araneae) J. Appl. Entomol. 2008;132:614–622. doi: 10.1111/j.1439-0418.2008.01294.x. DOI
Desneux N, Decourtye A, Delpuech J-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007;525:81–106. doi: 10.1146/annurev.ento.52.110405.091440. PubMed DOI
Evans SC, Shaw EM, Rypstra AL. Exposure to glyphosate-based herbicide affects agrobiont predatory arthropod behavior and long-term survival. Ecotoxicology. 2010;19:1249–1257. doi: 10.1007/s10646-010-0509-9. PubMed DOI
Tietjen WJ, Cady AB. Sublethal exposure to a neurotoxic pesticide affects activity rhythms and patterns of four spider species. J. Arachnol. 2007;35:396–406. doi: 10.1636/S04-62.1. DOI
Řezáč M, Gloríková N, Wilder SM, Heneberg P. The sublethal effects of neonicotinoids on spiders are independent of their nutritional status. Sci. Rep. 2021;11:8496. doi: 10.1038/s41598-021-87935-z. PubMed DOI PMC
Dupuis J, Louis T, Gauthier M, Raymond V. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: From genes to behavioral functions. Neurosci. Biobehav. Rev. 2012;36:1553–1564. doi: 10.1016/j.neubiorev.2012.04.003. PubMed DOI
Aleman-Meza B, Loeza-Cabrera M, Peña-Ramos O, Stern M, Zhong W. High-content behavioral profiling reveals neuronal genetic network modulating Drosophila larval locomotor program. BMC Genet. 2017;18:40. doi: 10.1186/s12863-017-0513-7. PubMed DOI PMC
Baines RA, Bate M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 1998;18:4673–4683. doi: 10.1523/JNEUROSCI.18-12-04673.1998. PubMed DOI PMC
Whitehorn PR, O'Connor S, Wackers FL, Goulson D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science. 2012;336:351–352. doi: 10.1126/science.1215025. PubMed DOI
Dicks L. Bees, lies and evidence-based policy. Nature. 2013;494:283. doi: 10.1038/494283a. PubMed DOI
Rundlöf M, et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature. 2015;521:77–80. doi: 10.1038/nature14420. PubMed DOI
Tsvetkov N, et al. Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science. 2017;356:1395–1397. doi: 10.1126/science.aam7470. PubMed DOI
Woodcock BA, et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science. 2017;356:1393–1395. doi: 10.1126/science.aaa1190. PubMed DOI
Korenko S, Sýkora J, Řezáč M, Heneberg P. Neonicotinoids suppress contact chemoreception in a common farmland spider. Sci. Rep. 2020;10:7019. doi: 10.1038/s41598-020-63955-z. PubMed DOI PMC
Benamú M, et al. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. Chemosphere. 2017;181:241–249. doi: 10.1016/j.chemosphere.2017.04.079. PubMed DOI
Řezáč M, Řezáčová V, Heneberg P. Neonicotinoid insecticides limit the potential of spiders to re-colonize disturbed agroecosystems when using silk-mediated dispersal. Sci. Rep. 2019;9:12272. doi: 10.1038/s41598-019-48729-6. PubMed DOI PMC
Řezáč M, Řezáčová V, Heneberg P. Contact application of neonicotinoids suppresses the predation rate in different densities of prey and induces paralysis of common farmland spiders. Sci. Rep. 2019;9:5724. doi: 10.1038/s41598-019-42258-y. PubMed DOI PMC
Williamson SM, Willis SJ, Wright GA. Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology. 2014;23:1409–1418. doi: 10.1007/s10646-014-1283-x. PubMed DOI PMC
Charreton M, et al. A locomotor deficit induced by sublethal doses of pyrethroid and neonicotinoid insecticides in the honeybee Apis mellifera. PLoS ONE. 2015;10:e0144879. doi: 10.1371/journal.pone.0144879. PubMed DOI PMC
De Oliveira Jacob CR, Zanardi OZ, Malaquias JB, Silva CAS, Yamamoto PT. The impact of four widely used neonicotinoid insecticides on Tetragonisca angustula (Latreille) (Hymenoptera: Apidae) Chemosphere. 2019;224:65–70. doi: 10.1016/j.chemosphere.2019.02.105. PubMed DOI
Muth F, Gaxiola RL, Leonard AS. No evidence for neonicotinoid preferences in the bumblebee Bombus impatiens. R. Soc. Open Sci. 2020;7:191883. doi: 10.1098/rsos.191883. PubMed DOI PMC
Tasman K, Rands SA, Hodge JJL. The neonicotinoid insecticide imidacloprid disrupts bumblebee foraging rhythms and sleep. iScience. 2020;23:101827. doi: 10.1016/j.isci.2020.101827. PubMed DOI PMC
Tasman K, Rands SA, Hodge JJL. The power of Drosophila melanogaster for modeling neonicotinoid effects on pollinators and identifying novel mechanisms. Front. Physiol. 2021;12:659440. doi: 10.3389/fphys.2021.659440. PubMed DOI PMC
Tooming E, et al. Behavioural effects of the neonicotinoid ninsecticide thiamethoxam on the predatory insect Platynus assimilis. Ecotoxicology. 2017;26:902–913. doi: 10.1007/s10646-017-1820-5. PubMed DOI
Kudelska MM, Holden-Dye L, O'Connor V, Doyle DA. Concentration-dependent effects of acute and chronic neonicotinoid exposure on the behavior and development of the nematode Caenorhabditis elegans. Pest Manag. Sci. 2017;73:1345–1351. doi: 10.1002/ps.4564. PubMed DOI
Bradford BR, Whidden E, Gervasio ED, Checchi PM, Raley-Susman KM. Neonicotinoid-containing insecticide disruption of growth, locomotion, and fertility in Caenorhabditis elegans. PLoS ONE. 2020;15:e028637. doi: 10.1371/journal.pone.0238637. PubMed DOI PMC
Öberg S, Ekbom B, Bommarco R. Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agricult. Ecosyst. Environ. 2007;122:211–219. doi: 10.1016/j.agee.2006.12.034. DOI
Čejka M, Holuša J, Skokanová H. Mowed orchards of the thermophyticum in Central Europe as vanishing refugia for steppe spiders. Agrofor. Syst. 2018;92:637–642. doi: 10.1007/s10457-016-0026-9. DOI
Wise D. Spiders in Ecological Webs. Cambridge University Press; 1993.
Noldus LP, Spink AJ, Tegelenbosch RA. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 2001;33:398–414. doi: 10.3758/BF03195394. PubMed DOI
Bonmatin J-M, et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. Int. 2015;22:35–67. doi: 10.1007/s11356-014-3332-7. PubMed DOI PMC
Iwasa T, Motoyama N, Ambrose JT, Roe MR. Mechanism for the differential toxicity of neonicotinoid insectiides in the honey bee, Apis mellifera. Crop Protect. 2004;23:371–378. doi: 10.1016/j.cropro.2003.08.018. DOI
Laurino D, Porporato M, Patetta A, Manino A. Toxicity of neonicotinoid insecticides to honey bees laboratory tests. Bull. Insectol. 2011;64:107–113.
Lambin M, Armengaud C, Raymond S, Gauthier M. Imidacloprid-induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch. Insect Biochem. Physiol. 2001;48:129–134. doi: 10.1002/arch.1065. PubMed DOI
El Hassani AK, et al. Effects of sublethal doses of acetamiprid and thiamethoxam on the behavior of the honeybee (Apis mellifera) Arch. Environ. Contam. Toxicol. 2008;54:653–661. doi: 10.1007/s00244-007-9071-8. PubMed DOI
Aliouane Y, et al. Subchronic exposure of honeybees to sublethal doses of pesticides: Effect on behavior. Environ. Toxicol. Chem. 2009;28:113–122. doi: 10.1897/08-110.1. PubMed DOI
Zera AJ. Physiology and ecology of dispersal polymorphism in insects. Annu. Rev. Entomol. 1997;42:207–230. doi: 10.1146/annurev.ento.42.1.207. PubMed DOI
Cizek O, Zamecnik J, Tropek R, Kocarek P, Konvicka M. Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J. Insect Conserv. 2012;16:215–226. doi: 10.1007/s10841-011-9407-6. DOI
Pech P, Dolanský J, Hrdlička R, Lepš J. Differential response of communities of plants, snails, ants and spiders to long-term mowing in a small-scale experiment. Commun. Ecol. 2015;16:115–124. doi: 10.1556/168.2015.16.1.13. DOI
Haskins MF, Shaddy JH. The ecological effects of burning, mowing, and plowing on ground-inhabiting spiders (Araneae) in an old-field ecosystem. J. Arachnol. 1986;14:1–13.
Nyffeler M, Sterling WL, Dean DA. How spiders make a living. Environ. Entomol. 1994;23:1357–1367. doi: 10.1093/ee/23.6.1357. DOI
Humbert JY, Ghazoul J, Richner N, Walter T. Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol. Conserv. 2012;152:96–101. doi: 10.1016/j.biocon.2012.03.015. DOI
Šálek M, et al. Edges within farmland: Management implications of taxon specific species richness correlates. Basic Appl. Ecol. 2015;16:714–725. doi: 10.1016/j.baae.2015.08.001. DOI
Řezáč M, Heneberg P. Effects of uncut hay meadow strips on spiders. Biologia. 2018;73:43–51. doi: 10.2478/s11756-018-0015-8. DOI
Halley JM, Thomas CFG, Jepson PC. A model for the spatial dynamics of linyphiid spiders in farmland. J. Appl. Ecol. 1996;33:471–492. doi: 10.2307/2404978. DOI
Samu F, Sunderland KD, Szinetár C. Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: A review. J. Arachnol. 1999;27:325–332.
Edgar W, Loenen M. Aspects of the overwintering habitat of the wolf spider Pardosa lugubris. J. Zool. 1974;172:383–388. doi: 10.1111/j.1469-7998.1974.tb04114.x. DOI
Plath E, Rischen T, Mohr T, Fischer K. Biodiversity in agricultural landscapes: grassy field margins and semi-natural fragments both foster spider diversity and body size. Agricult. Ecosyst. Environ. 2021;316:107457. doi: 10.1016/j.agee.2021.107457. DOI