Food provisioning to Pardosa spiders decreases the levels of tissue-resident endosymbiotic bacteria

. 2023 Apr 28 ; 13 (1) : 6943. [epub] 20230428

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37117271
Odkazy

PubMed 37117271
PubMed Central PMC10147729
DOI 10.1038/s41598-023-34229-1
PII: 10.1038/s41598-023-34229-1
Knihovny.cz E-zdroje

The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.

Zobrazit více v PubMed

Nyffeler M, Sunderland KD. Composition, abundance and pest control potential of spider communities in agroecosystems: A comparison of European and US studies. Agric. Ecosyst. Environ. 2003;95:579–612. doi: 10.1016/S0167-8809(02)00181-0. DOI

Tóth F, Kiss J. Comparative analyses of epigeic spider assemblages in northern Hungarian winter wheat fields and their adjacent margins. J. Arachnol. 1999;27:241–248.

Kromp B, Steinberger KH. Grassy field margins and arthropod diversity: A case study on ground beetles and spiders in eastern Austria (Coleoptera: Carabidae; Arachnida: Aranei, Opiliones) Agric. Ecosyst. Environ. 1992;40:71–93. doi: 10.1016/0167-8809(92)90085-P. DOI

Nyffeler M, Benz G. Feeding ecology and predatory importance of wolf spiders (Pardosa spp.) (Araneae, Lycosidae) in winter wheat fields. J. Appl. Entomol. 1988;106:123–134. doi: 10.1111/j.1439-0418.1988.tb00575.x. DOI

Kajak A. Effects of epigeic macroarthropods on grass litter decomposition in a mown meadow. Agric. Ecosyst. Environ. 1997;64:53–63. doi: 10.1016/S0167-8809(96)01125-5. DOI

Schmidt MH, Thewes U, Thies C, Tscharntke T. Aphid suppression by natural enemies in mulched cereals. Entomol. Exp. Appl. 2014;113:87–93. doi: 10.1111/j.0013-8703.2004.00205.x. DOI

Birkhofer K, et al. Custorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 2008;98:249–255. doi: 10.1017/S0007485308006019. PubMed DOI

Tooker JF, O’Neal ME, Rodriguez-Saona C. Balancing disturbance and conservation in agroecosystems to improve biological control. Annu. Rev. Entomol. 2020;65:81–100. doi: 10.1146/annurev-ento-011019-025143. PubMed DOI

Hill MP, Macfadyen S, Nash MA. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ. 2017;5:e4179. doi: 10.7717/peerj.4179. PubMed DOI PMC

Pekár S, Liznarová E, Řezáč M. Suitability of woodlice prey for generalist and specialist spider predators: A comparative study. Ecol. Entomol. 2016;41:123–130. doi: 10.1111/een.12285. DOI

Toft S, Macias-Hernandez N. Prey acceptance and metabolic specialisations in some Canarian Dysdera spiders. J. Insect Physiol. 2021;131:104227. doi: 10.1016/j.jinsphys.2021.104227. PubMed DOI

Pekár S, Toft S. Trophic specialization in a predatory group: the case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90:744–761. doi: 10.1111/brv.12133. PubMed DOI

Mostoufi SL, Singh ND. Diet-induced changes in titer support a discrete response of Wolbachia-associated plastic recombination in Drosophila melanogaster. G3. 2022;12:jkab375. doi: 10.1093/g3journal/jkab375. PubMed DOI PMC

Serbus LR, et al. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog. 2015;11:e1004777. doi: 10.1371/journal.ppat.1004777. PubMed DOI PMC

Ponton F, et al. Macronutrients mediate the functional relationship between Drosophila and Wolbachia. Proc. Biol. Sci. 2015;282:20142029. PubMed PMC

Truitt AM, Kapun M, Kaur R, Miller WJ. Wolbachia modifies thermal preference in Drosophila melanogaster. Env. Microbiol. 2018;21:3259–3268. doi: 10.1111/1462-2920.14347. PubMed DOI PMC

Harcombe W, Hoffmann AA. Wolbachia effects in Drosophila melanogaster: In search of fitness benefits. J. Invertebr. Pathol. 2004;87:45–50. doi: 10.1016/j.jip.2004.07.003. PubMed DOI

Shropshire JD, van Opstal EJ, Bordenstein SR. An optimized approach to germ-free rearing in the jewel wasp Nasonia. PeerJ. 2016;4:2316. doi: 10.7717/peerj.2316. PubMed DOI PMC

Dillon RJ, Vennard CT, Buckling A, Charnley AK. Diversity of locust gut bacteria protects against pathogen invasion. Ecol. Lett. 2005;8:1291–1298. doi: 10.1111/j.1461-0248.2005.00828.x. DOI

Genta FA, Dillon RJ, Terra WR, Ferreira C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol. 2006;52:593–601. doi: 10.1016/j.jinsphys.2006.02.007. PubMed DOI

Zhang F, et al. Pseudomonas reactans, a bacterial strain isolated from the intestinal flora of Blatella germanica with anti-Beauveria bassiana activity. Environ. Entomol. 2013;42:453–459. doi: 10.1603/EN12347. PubMed DOI

Petnicki-Ocwieja T, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA. 2009;106:15813–15818. doi: 10.1073/pnas.0907722106. PubMed DOI PMC

von Schillde M-A, et al. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe. 2012;11:387–396. doi: 10.1016/j.chom.2012.02.006. PubMed DOI

Federici S, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 2022;185:2879–2898. doi: 10.1016/j.cell.2022.07.003. PubMed DOI

Gao Y, Wu PF, Cui SY, Ali A, Zheng G. Divergence in gut bacterial community between females and males in the wolf spider Pardosa astrigera. Ecol. Evol. 2022;12:e8823. doi: 10.1002/ece3.8823. PubMed DOI PMC

Wu RB, Wang LY, Xie JP, Zhang ZS. Diversity and function of wolf spider gut microbiota revealed by shotgun metagenomics. Front. Microbiol. 2021;12:758794. doi: 10.3389/fmicb.2021.758794. PubMed DOI PMC

Tyagi K, Tyagi I, Kumar V. Insights into the gut bacterial communities of spider from wild with no evidence of phylosymbiosis. Saudi J. Biol. Sci. 2021;28:5913–5924. doi: 10.1016/j.sjbs.2021.06.059. PubMed DOI PMC

Tyagi K, Tyagi I, Kumar V. Interspecific variation and functional traits of the gut microbiome in spiders from the wild: The largest effort so far. PLoS ONE. 2021;16:e0251790. doi: 10.1371/journal.pone.0251790. PubMed DOI PMC

Kumar V, Tyagi I, Tyagi K, Chandra K. Diversity and structure of bacterial communities in the gut of spider: Thomisidae and Oxyopidae. Front. Ecol. Evol. 2020;8:588102. doi: 10.3389/fevo.2020.588102. DOI

Kennedy SR, Tsau S, Gillespie R, Krehenwinkel H. Are you what you eat? A highly transient and prey-influenced gut microbiome in the grey house spider Badumna longinqua. Mol. Ecol. 2020;29:1001–1015. doi: 10.1111/mec.15370. PubMed DOI

Busck MM, et al. Microbiomes and specific symbionts of social spiders: Compositional patterns in host species, populations, and nests. Front. Microbiol. 2020;11:1845. doi: 10.3389/fmicb.2020.01845. PubMed DOI PMC

Millar EN, Surette MG, Kidd KA. Altered microbiomes of aquatic macroinvertebrates and riparian spiders downstream of municipal wastewater effluents. Sci. Total Environ. 2022;809:151156. doi: 10.1016/j.scitotenv.2021.151156. PubMed DOI

White JA, et al. Endosymbiotic bacteria are prevalent and diverse in agricultural spiders. Microb. Ecol. 2020;79:472–481. doi: 10.1007/s00248-019-01411-w. PubMed DOI

Sheffer MM, et al. Tissue- and population-level microbiome analysis of the wasp spider Argiope bruennichi identified a novel dominant bacterial symbiont. Microorganisms. 2020;8:8. doi: 10.3390/microorganisms8010008. PubMed DOI PMC

Dunaj SJ, Bettencourt BR, Garb JE, Brucker RM. Spider phylosymbiosis: Divergence of widow spider species and their tissues` microbiomes. BMC Evol. Biol. 2020;20:104. doi: 10.1186/s12862-020-01664-x. PubMed DOI PMC

Zhang L, Yun Y, Hu G, Peng Y. Insights into the bacterial symbiont diversity in spiders. Ecol. Evol. 2018;8:4899–4906. doi: 10.1002/ece3.4051. PubMed DOI PMC

Duron O, et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008;6:27. doi: 10.1186/1741-7007-6-27. PubMed DOI PMC

Duron O, Hurst GDD, Hornett EA, Josling JA, Engelstädter J. High incidence of the maternally inherited bacterium Cardinium in spiders. Mol. Ecol. 2008;17:1427–1437. doi: 10.1111/j.1365-294X.2008.03689.x. PubMed DOI

Vanthournout B, Hendrickx F. Endosymbiont dominated bacterial communities in a dwarf spider. PLoS ONE. 2015;10:e0117297. doi: 10.1371/journal.pone.0117297. PubMed DOI PMC

Vanthournout B, Swaegers J, Hendrickx F. Spiders do not escape reproductive manipulations by Wolbachia. BMC Evol. Biol. 2011;11:15. doi: 10.1186/1471-2148-11-15. PubMed DOI PMC

Goodacre SL, et al. Microbial modifications of host long-distance dispersal capacity. BMC Biol. 2009;7:32. doi: 10.1186/1741-7007-7-32. PubMed DOI PMC

Rosenwald LC, Sitvarin MI, White JA. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc. R. Soc. B. 2020;287:20201107. doi: 10.1098/rspb.2020.1107. PubMed DOI PMC

Adame MF, Santini NS, Torres-Talamante O, Rogers K. Pervasive effects of Wolbachia on host activity. Biol. Lett. 2021;17:20210052. doi: 10.1098/rsbl.2021.0052. PubMed DOI PMC

Morioka E, Oida M, Tsuchida T, Ikeda M. Nighttime activities and peripheral clock oscillations depend on Wolbachia endosymbionts in flies. Sci. Rep. 2018;8:15432. doi: 10.1038/s41598-018-33522-8. PubMed DOI PMC

Vale F, Jardine MD. Sex-specific behavioural symptoms of viral gut infection and Wolbachia in Drosophila melanogaster. J. Insect Physiol. 2015;82:28–32. doi: 10.1016/j.jinsphys.2015.08.005. PubMed DOI

Aagaard A, et al. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol. Ecol. 2022;31:5765–5783. doi: 10.1111/mec.16696. PubMed DOI PMC

Keiser CN, Wright CM, Pruitt JN. Increased bacterial load can reduce or negate the effects of keystone individuals on group collective behaviour. Anim. Behav. 2016;114:211–218. doi: 10.1016/j.anbehav.2016.02.010. DOI

Noldus LP, Spink AJ, Tegelenbosch RA. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 2001;33:398–414. doi: 10.3758/BF03195394. PubMed DOI

Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC

Caporaso JG, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624. doi: 10.1038/ismej.2012.8. PubMed DOI PMC

Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015;75:129–137. doi: 10.3354/ame01753. DOI

Walters W, et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009-00015. PubMed PMC

Větrovský T, Baldrian P, Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC

Větrovský, T. Reference database for 16S (Bacteria and Archaea) based on RDP release 11 2022-03-29 (zip). https://www.biomed.cas.cz/mbu/lbwrf/seed/archive/16S_RDP11_2022.zip. Accessed Sep-14-2022 (2022).

Schoch CL, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database (Oxford). 2020;2020:baaa062. doi: 10.1093/database/baaa062. PubMed DOI PMC

Harper DAT. Numerical Palaeobiology. Wiley; 1999.

Maupin JL, Riechert S. Superfluous killing in spiders: A consequence of adaptation to food-limited environments? Behav. Ecol. 2001;12:569–576. doi: 10.1093/beheco/12.5.569. DOI

Riechert, S. E. & Maupin, J. L. Spider effects on prey: tests for superfluous killing in five web-builders. in (Selden, P.A. ed.) Proceedings of the 17th European Colloquium of Arachnology, Edinburgh, 1997, 203–210. (British Arachnological Society, 1998).

Samu F, Bíró Z. Functional response, multiple feeding, and wasteful killing in a wolf spider (Araneae: Lycosidae) Eur. J. Entomol. 1993;90:471–476.

Smith, R. B. & Wellington, W. G. The functional response of a juvenile orb-weaving spider. in (Eberhard, W.G., Lubin, Y.D., Robinson, B.C. eds.) Proceedings of the Ninth International Congress of Arachnology, Panama, 1983, 275–279. (Smithsonian Institution Press, 1986).

Mansour F, Heimbach U. Evaluation of lycosid, micryphantid and linyphiid spiders as predators of Rhopalosiphum padi (Hom.: Aphididae) and their functional response to prey density—Laboratory experiments. Entomophaga. 1993;38:79–87. doi: 10.1007/BF02373142. DOI

Ford MJ. Locomotory activity and the predation strategy of the wolf spider Pardosa amentata (Clerk) (Lycosidae) Anim. Behav. 1977;26:31–35. doi: 10.1016/0003-3472(78)90005-2. PubMed DOI

Samu F, Szirany A, Kiss B. Foraging in agricultural fields: Local “sit-and-move” strategy scales up to risk-averse habitat use in a wolf spider. Anim. Behav. 2003;66:939–947. doi: 10.1006/anbe.2003.2265. DOI

Kruse PD, Toft S, Sunderland KD. Temperature and prey capture: Opposite relationships in two predator taxa. Ecol. Entomol. 2008;33:305–312. doi: 10.1111/j.1365-2311.2007.00978.x. DOI

Cady AB. Microhabitat selection and locomotor activity of Scizocosa ocreata (Walckenaer) (Araneae, Lycosidae) J. Arachnol. 1984;11:297–307.

Řezáč M, Přibáňová G, Gloríková N, Heneberg P. Contact exposure to neonicotinoid insecticides temporarily suppresses the locomotor activity of Pardosa lugubris agrobiont wolf spiders. Sci. Rep. 2022;12:14745. doi: 10.1038/s41598-022-18842-0. PubMed DOI PMC

Moya-Larano J. Senescence and food limitation in a slowly ageing spider. Funct. Ecol. 2002;16:734–741. doi: 10.1046/j.1365-2435.2002.00685.x. DOI

Hoffman CR, Sitvarin MI, Rypstra AL. Information from familiar and related conspecifics affects foraging in a solitary wolf spider. Oecologia. 2016;181:359–367. doi: 10.1007/s00442-015-3460-x. PubMed DOI

Mols PJM. Hunger in relation to searching behavior, predation and egg-production of the carabid beetle Pterostichus coerulescens L.—Results of simulation. Acta Phytopathol. Entomol. Hung. 1987;22:187–205.

Persons MH. Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae) Anim. Behav. 1999;57:81–88. doi: 10.1006/anbe.1998.0948. PubMed DOI

Anderson JF. Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis (Hentz) Ecology. 1974;55:576–585. doi: 10.2307/1935148. DOI

Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B Biol. Sci. 2015;282:20150249. doi: 10.1098/rspb.2015.0249. PubMed DOI PMC

Sazama EJ, Ouellette SP, Wesner JS. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 2019;48:127–133. doi: 10.1093/ee/nvy188. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace