Food provisioning to Pardosa spiders decreases the levels of tissue-resident endosymbiotic bacteria
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37117271
PubMed Central
PMC10147729
DOI
10.1038/s41598-023-34229-1
PII: 10.1038/s41598-023-34229-1
Knihovny.cz E-zdroje
- MeSH
- Coxiellaceae * MeSH
- Drosophila MeSH
- hostitelská specificita MeSH
- pavouci * mikrobiologie MeSH
- Rickettsia * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The diversity, host specificity, and physiological effects of endosymbiotic bacteria in spiders (Araneae) are poorly characterized. We used 16S rDNA sequencing to evaluate endosymbionts in the cephalothorax and legs of a wolf spider Pardosa agrestis. We tested the effects of feeding once or twice daily with fruit flies, aphids, or starved and compared them to those of syntopically occurring Pardosa palustris. The feeding increased traveled distance up to five times in some of the groups provisioned with food relative to the starved control. The Shannon diversity t-test revealed significant differences between these component communities of the two spider species. The increased frequency of feeding with fruit flies, but not aphids, increased the dominance and decreased the alpha diversity of OTUs. The obligate or facultative endosymbionts were present in all analyzed spider individuals and were represented mostly by Rickettsiella, Rhabdochlamydia, Spiroplasma, and the facultative intracellular parasite Legionella. Vertically transmitted endosymbionts were less common, represented by Wolbachia pipientis and Rickettsia sp. H820. The relative abundance of Mycoplasma spp. was negatively correlated with provisioned or killed aphids. In conclusion, the tissues of Pardosa spiders host tremendously diverse assemblages of bacteria, including obligate or facultative endosymbionts, with yet unknown phenotypic effects.
Charles University 3rd Faculty of Medicine Ruská 87 100 00 Prague Czech Republic
Crop Research Institute Drnovská 507 160 00 Prague Czech Republic
Zobrazit více v PubMed
Nyffeler M, Sunderland KD. Composition, abundance and pest control potential of spider communities in agroecosystems: A comparison of European and US studies. Agric. Ecosyst. Environ. 2003;95:579–612. doi: 10.1016/S0167-8809(02)00181-0. DOI
Tóth F, Kiss J. Comparative analyses of epigeic spider assemblages in northern Hungarian winter wheat fields and their adjacent margins. J. Arachnol. 1999;27:241–248.
Kromp B, Steinberger KH. Grassy field margins and arthropod diversity: A case study on ground beetles and spiders in eastern Austria (Coleoptera: Carabidae; Arachnida: Aranei, Opiliones) Agric. Ecosyst. Environ. 1992;40:71–93. doi: 10.1016/0167-8809(92)90085-P. DOI
Nyffeler M, Benz G. Feeding ecology and predatory importance of wolf spiders (Pardosa spp.) (Araneae, Lycosidae) in winter wheat fields. J. Appl. Entomol. 1988;106:123–134. doi: 10.1111/j.1439-0418.1988.tb00575.x. DOI
Kajak A. Effects of epigeic macroarthropods on grass litter decomposition in a mown meadow. Agric. Ecosyst. Environ. 1997;64:53–63. doi: 10.1016/S0167-8809(96)01125-5. DOI
Schmidt MH, Thewes U, Thies C, Tscharntke T. Aphid suppression by natural enemies in mulched cereals. Entomol. Exp. Appl. 2014;113:87–93. doi: 10.1111/j.0013-8703.2004.00205.x. DOI
Birkhofer K, et al. Custorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 2008;98:249–255. doi: 10.1017/S0007485308006019. PubMed DOI
Tooker JF, O’Neal ME, Rodriguez-Saona C. Balancing disturbance and conservation in agroecosystems to improve biological control. Annu. Rev. Entomol. 2020;65:81–100. doi: 10.1146/annurev-ento-011019-025143. PubMed DOI
Hill MP, Macfadyen S, Nash MA. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ. 2017;5:e4179. doi: 10.7717/peerj.4179. PubMed DOI PMC
Pekár S, Liznarová E, Řezáč M. Suitability of woodlice prey for generalist and specialist spider predators: A comparative study. Ecol. Entomol. 2016;41:123–130. doi: 10.1111/een.12285. DOI
Toft S, Macias-Hernandez N. Prey acceptance and metabolic specialisations in some Canarian Dysdera spiders. J. Insect Physiol. 2021;131:104227. doi: 10.1016/j.jinsphys.2021.104227. PubMed DOI
Pekár S, Toft S. Trophic specialization in a predatory group: the case of prey-specialised spiders (Araneae) Biol. Rev. 2015;90:744–761. doi: 10.1111/brv.12133. PubMed DOI
Mostoufi SL, Singh ND. Diet-induced changes in titer support a discrete response of Wolbachia-associated plastic recombination in Drosophila melanogaster. G3. 2022;12:jkab375. doi: 10.1093/g3journal/jkab375. PubMed DOI PMC
Serbus LR, et al. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog. 2015;11:e1004777. doi: 10.1371/journal.ppat.1004777. PubMed DOI PMC
Ponton F, et al. Macronutrients mediate the functional relationship between Drosophila and Wolbachia. Proc. Biol. Sci. 2015;282:20142029. PubMed PMC
Truitt AM, Kapun M, Kaur R, Miller WJ. Wolbachia modifies thermal preference in Drosophila melanogaster. Env. Microbiol. 2018;21:3259–3268. doi: 10.1111/1462-2920.14347. PubMed DOI PMC
Harcombe W, Hoffmann AA. Wolbachia effects in Drosophila melanogaster: In search of fitness benefits. J. Invertebr. Pathol. 2004;87:45–50. doi: 10.1016/j.jip.2004.07.003. PubMed DOI
Shropshire JD, van Opstal EJ, Bordenstein SR. An optimized approach to germ-free rearing in the jewel wasp Nasonia. PeerJ. 2016;4:2316. doi: 10.7717/peerj.2316. PubMed DOI PMC
Dillon RJ, Vennard CT, Buckling A, Charnley AK. Diversity of locust gut bacteria protects against pathogen invasion. Ecol. Lett. 2005;8:1291–1298. doi: 10.1111/j.1461-0248.2005.00828.x. DOI
Genta FA, Dillon RJ, Terra WR, Ferreira C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol. 2006;52:593–601. doi: 10.1016/j.jinsphys.2006.02.007. PubMed DOI
Zhang F, et al. Pseudomonas reactans, a bacterial strain isolated from the intestinal flora of Blatella germanica with anti-Beauveria bassiana activity. Environ. Entomol. 2013;42:453–459. doi: 10.1603/EN12347. PubMed DOI
Petnicki-Ocwieja T, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA. 2009;106:15813–15818. doi: 10.1073/pnas.0907722106. PubMed DOI PMC
von Schillde M-A, et al. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe. 2012;11:387–396. doi: 10.1016/j.chom.2012.02.006. PubMed DOI
Federici S, et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell. 2022;185:2879–2898. doi: 10.1016/j.cell.2022.07.003. PubMed DOI
Gao Y, Wu PF, Cui SY, Ali A, Zheng G. Divergence in gut bacterial community between females and males in the wolf spider Pardosa astrigera. Ecol. Evol. 2022;12:e8823. doi: 10.1002/ece3.8823. PubMed DOI PMC
Wu RB, Wang LY, Xie JP, Zhang ZS. Diversity and function of wolf spider gut microbiota revealed by shotgun metagenomics. Front. Microbiol. 2021;12:758794. doi: 10.3389/fmicb.2021.758794. PubMed DOI PMC
Tyagi K, Tyagi I, Kumar V. Insights into the gut bacterial communities of spider from wild with no evidence of phylosymbiosis. Saudi J. Biol. Sci. 2021;28:5913–5924. doi: 10.1016/j.sjbs.2021.06.059. PubMed DOI PMC
Tyagi K, Tyagi I, Kumar V. Interspecific variation and functional traits of the gut microbiome in spiders from the wild: The largest effort so far. PLoS ONE. 2021;16:e0251790. doi: 10.1371/journal.pone.0251790. PubMed DOI PMC
Kumar V, Tyagi I, Tyagi K, Chandra K. Diversity and structure of bacterial communities in the gut of spider: Thomisidae and Oxyopidae. Front. Ecol. Evol. 2020;8:588102. doi: 10.3389/fevo.2020.588102. DOI
Kennedy SR, Tsau S, Gillespie R, Krehenwinkel H. Are you what you eat? A highly transient and prey-influenced gut microbiome in the grey house spider Badumna longinqua. Mol. Ecol. 2020;29:1001–1015. doi: 10.1111/mec.15370. PubMed DOI
Busck MM, et al. Microbiomes and specific symbionts of social spiders: Compositional patterns in host species, populations, and nests. Front. Microbiol. 2020;11:1845. doi: 10.3389/fmicb.2020.01845. PubMed DOI PMC
Millar EN, Surette MG, Kidd KA. Altered microbiomes of aquatic macroinvertebrates and riparian spiders downstream of municipal wastewater effluents. Sci. Total Environ. 2022;809:151156. doi: 10.1016/j.scitotenv.2021.151156. PubMed DOI
White JA, et al. Endosymbiotic bacteria are prevalent and diverse in agricultural spiders. Microb. Ecol. 2020;79:472–481. doi: 10.1007/s00248-019-01411-w. PubMed DOI
Sheffer MM, et al. Tissue- and population-level microbiome analysis of the wasp spider Argiope bruennichi identified a novel dominant bacterial symbiont. Microorganisms. 2020;8:8. doi: 10.3390/microorganisms8010008. PubMed DOI PMC
Dunaj SJ, Bettencourt BR, Garb JE, Brucker RM. Spider phylosymbiosis: Divergence of widow spider species and their tissues` microbiomes. BMC Evol. Biol. 2020;20:104. doi: 10.1186/s12862-020-01664-x. PubMed DOI PMC
Zhang L, Yun Y, Hu G, Peng Y. Insights into the bacterial symbiont diversity in spiders. Ecol. Evol. 2018;8:4899–4906. doi: 10.1002/ece3.4051. PubMed DOI PMC
Duron O, et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008;6:27. doi: 10.1186/1741-7007-6-27. PubMed DOI PMC
Duron O, Hurst GDD, Hornett EA, Josling JA, Engelstädter J. High incidence of the maternally inherited bacterium Cardinium in spiders. Mol. Ecol. 2008;17:1427–1437. doi: 10.1111/j.1365-294X.2008.03689.x. PubMed DOI
Vanthournout B, Hendrickx F. Endosymbiont dominated bacterial communities in a dwarf spider. PLoS ONE. 2015;10:e0117297. doi: 10.1371/journal.pone.0117297. PubMed DOI PMC
Vanthournout B, Swaegers J, Hendrickx F. Spiders do not escape reproductive manipulations by Wolbachia. BMC Evol. Biol. 2011;11:15. doi: 10.1186/1471-2148-11-15. PubMed DOI PMC
Goodacre SL, et al. Microbial modifications of host long-distance dispersal capacity. BMC Biol. 2009;7:32. doi: 10.1186/1741-7007-7-32. PubMed DOI PMC
Rosenwald LC, Sitvarin MI, White JA. Endosymbiotic Rickettsiella causes cytoplasmic incompatibility in a spider host. Proc. R. Soc. B. 2020;287:20201107. doi: 10.1098/rspb.2020.1107. PubMed DOI PMC
Adame MF, Santini NS, Torres-Talamante O, Rogers K. Pervasive effects of Wolbachia on host activity. Biol. Lett. 2021;17:20210052. doi: 10.1098/rsbl.2021.0052. PubMed DOI PMC
Morioka E, Oida M, Tsuchida T, Ikeda M. Nighttime activities and peripheral clock oscillations depend on Wolbachia endosymbionts in flies. Sci. Rep. 2018;8:15432. doi: 10.1038/s41598-018-33522-8. PubMed DOI PMC
Vale F, Jardine MD. Sex-specific behavioural symptoms of viral gut infection and Wolbachia in Drosophila melanogaster. J. Insect Physiol. 2015;82:28–32. doi: 10.1016/j.jinsphys.2015.08.005. PubMed DOI
Aagaard A, et al. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol. Ecol. 2022;31:5765–5783. doi: 10.1111/mec.16696. PubMed DOI PMC
Keiser CN, Wright CM, Pruitt JN. Increased bacterial load can reduce or negate the effects of keystone individuals on group collective behaviour. Anim. Behav. 2016;114:211–218. doi: 10.1016/j.anbehav.2016.02.010. DOI
Noldus LP, Spink AJ, Tegelenbosch RA. EthoVision: A versatile video tracking system for automation of behavioral experiments. Behav. Res. Methods Instrum. Comput. 2001;33:398–414. doi: 10.3758/BF03195394. PubMed DOI
Caporaso JG, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107. PubMed DOI PMC
Caporaso JG, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624. doi: 10.1038/ismej.2012.8. PubMed DOI PMC
Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015;75:129–137. doi: 10.3354/ame01753. DOI
Walters W, et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009-00015. PubMed PMC
Větrovský T, Baldrian P, Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Větrovský, T. Reference database for 16S (Bacteria and Archaea) based on RDP release 11 2022-03-29 (zip). https://www.biomed.cas.cz/mbu/lbwrf/seed/archive/16S_RDP11_2022.zip. Accessed Sep-14-2022 (2022).
Schoch CL, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database (Oxford). 2020;2020:baaa062. doi: 10.1093/database/baaa062. PubMed DOI PMC
Harper DAT. Numerical Palaeobiology. Wiley; 1999.
Maupin JL, Riechert S. Superfluous killing in spiders: A consequence of adaptation to food-limited environments? Behav. Ecol. 2001;12:569–576. doi: 10.1093/beheco/12.5.569. DOI
Riechert, S. E. & Maupin, J. L. Spider effects on prey: tests for superfluous killing in five web-builders. in (Selden, P.A. ed.) Proceedings of the 17th European Colloquium of Arachnology, Edinburgh, 1997, 203–210. (British Arachnological Society, 1998).
Samu F, Bíró Z. Functional response, multiple feeding, and wasteful killing in a wolf spider (Araneae: Lycosidae) Eur. J. Entomol. 1993;90:471–476.
Smith, R. B. & Wellington, W. G. The functional response of a juvenile orb-weaving spider. in (Eberhard, W.G., Lubin, Y.D., Robinson, B.C. eds.) Proceedings of the Ninth International Congress of Arachnology, Panama, 1983, 275–279. (Smithsonian Institution Press, 1986).
Mansour F, Heimbach U. Evaluation of lycosid, micryphantid and linyphiid spiders as predators of Rhopalosiphum padi (Hom.: Aphididae) and their functional response to prey density—Laboratory experiments. Entomophaga. 1993;38:79–87. doi: 10.1007/BF02373142. DOI
Ford MJ. Locomotory activity and the predation strategy of the wolf spider Pardosa amentata (Clerk) (Lycosidae) Anim. Behav. 1977;26:31–35. doi: 10.1016/0003-3472(78)90005-2. PubMed DOI
Samu F, Szirany A, Kiss B. Foraging in agricultural fields: Local “sit-and-move” strategy scales up to risk-averse habitat use in a wolf spider. Anim. Behav. 2003;66:939–947. doi: 10.1006/anbe.2003.2265. DOI
Kruse PD, Toft S, Sunderland KD. Temperature and prey capture: Opposite relationships in two predator taxa. Ecol. Entomol. 2008;33:305–312. doi: 10.1111/j.1365-2311.2007.00978.x. DOI
Cady AB. Microhabitat selection and locomotor activity of Scizocosa ocreata (Walckenaer) (Araneae, Lycosidae) J. Arachnol. 1984;11:297–307.
Řezáč M, Přibáňová G, Gloríková N, Heneberg P. Contact exposure to neonicotinoid insecticides temporarily suppresses the locomotor activity of Pardosa lugubris agrobiont wolf spiders. Sci. Rep. 2022;12:14745. doi: 10.1038/s41598-022-18842-0. PubMed DOI PMC
Moya-Larano J. Senescence and food limitation in a slowly ageing spider. Funct. Ecol. 2002;16:734–741. doi: 10.1046/j.1365-2435.2002.00685.x. DOI
Hoffman CR, Sitvarin MI, Rypstra AL. Information from familiar and related conspecifics affects foraging in a solitary wolf spider. Oecologia. 2016;181:359–367. doi: 10.1007/s00442-015-3460-x. PubMed DOI
Mols PJM. Hunger in relation to searching behavior, predation and egg-production of the carabid beetle Pterostichus coerulescens L.—Results of simulation. Acta Phytopathol. Entomol. Hung. 1987;22:187–205.
Persons MH. Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae) Anim. Behav. 1999;57:81–88. doi: 10.1006/anbe.1998.0948. PubMed DOI
Anderson JF. Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis (Hentz) Ecology. 1974;55:576–585. doi: 10.2307/1935148. DOI
Weinert LA, Araujo-Jnr EV, Ahmed MZ, Welch JJ. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B Biol. Sci. 2015;282:20150249. doi: 10.1098/rspb.2015.0249. PubMed DOI PMC
Sazama EJ, Ouellette SP, Wesner JS. Bacterial endosymbionts are common among, but not necessarily within, insect species. Environ. Entomol. 2019;48:127–133. doi: 10.1093/ee/nvy188. PubMed DOI