• This record comes from PubMed

Neonicotinoid insecticides limit the potential of spiders to re-colonize disturbed agroecosystems when using silk-mediated dispersal

. 2019 Aug 22 ; 9 (1) : 12272. [epub] 20190822

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31439878
PubMed Central PMC6706445
DOI 10.1038/s41598-019-48729-6
PII: 10.1038/s41598-019-48729-6
Knihovny.cz E-resources

Agroecosystems are subject to regular disturbances that cause extinction or migration of much of their fauna, followed by recolonization from surrounding refuges. In small-sized aeronaut spiders, such recolonization is potentiated by their ability to rappel and balloon. These are complex behaviors that we hypothesized to be affected by neurotoxins, namely, neonicotinoids. We tested this hypothesis using two common farmland spider species, Oedothorax apicatus (Linyphiidae) and Phylloneta impressa (Theridiidae). The spiders were topically exposed by dorsal wet application or tarsal dry exposure to commercial neonicotinoid formulations Actara 25 WG, Biscaya 240 OD, Mospilan 20 SP and Confidor 200 OD at concentrations that are recommended for application in agriculture. Contact exposure to neonicotinoids suppressed the ability of spiders to produce the major ampullate fiber and anchor it to the substratum by piriform fibrils. Contact exposure to neonicotinoids also suppressed the ballooning behavior that was manifested by climbing to elevated places, adopting a tiptoe position and producing silk gossamer in the wind. Impaired ability of affected common farmland spiders to quickly recolonize disturbed agroecosystems by silk-mediated dispersal may explain their decline in multiple farmland ecosystems, in which neonicotinoids are applied.

See more in PubMed

Cizek O, Zamecnik J, Tropek R, Kocarek P, Konvicka M. Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J. Insect Conserv. 2012;16:215–226. doi: 10.1007/s10841-011-9407-6. DOI

Pech P, Dolanský J, Hrdlička R, Lepš J. Differential response of communities of plants, snails, ants and spiders to long-term mowing in a small-scale experiment. Commun. Ecol. 2015;16:115–124. doi: 10.1556/168.2015.16.1.13. DOI

Haskins MF, Shaddy JH. The ecological effects of burning, mowing, and plowing on ground-inhabiting spiders (Araneae) in an old-field ecosystem. J. Arachnol. 1986;14:1–13.

Nyffeler M, Sterling WL, Dean DA. How spiders make a living. Environ. Entomol. 1994;23:1357–1367. doi: 10.1093/ee/23.6.1357. DOI

Humbert JY, Ghazoul J, Richner N, Walter T. Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol. Conserv. 2012;152:96–101. doi: 10.1016/j.biocon.2012.03.015. DOI

Šálek M, et al. Edges within farmland: Management implications of taxon specific species richness correlates. Basic Appl. Ecol. 2015;16:714–725. doi: 10.1016/j.baae.2015.08.001. DOI

Řezáč M, Heneberg P. Effects of uncut hay meadow strips on spiders. Biologia. 2018;73:43–51. doi: 10.2478/s11756-018-0015-8. DOI

Halley JM, Thomas CFG, Jepson PC. A model for the spatial dynamics of linyphiid spiders in farmland. J. Appl. Ecol. 1996;33:471–492. doi: 10.2307/2404978. DOI

Isaia, M., Beikes, S., Paschetta, M., Sarvajayakesevalu, S. & Badino, G. Spiders as potential biological controllers in apple orchards infested by Cydia spp. (Lepidoptera: Tortricidae) in Proceedings of 24thEuropean Congress of Arachnology (eds Nentwig, W., Entling, M., Kropf, C.) 25–29 (Bern, 2010).

Pekár S, Michalko R, Loverre P, Líznarová E, Černecká Ľ. Biological control in winter: novel evidence for the importance of generalist predators. J. Appl. Ecol. 2015;52:270–279. doi: 10.1111/1365-2664.12363. DOI

Suenaga H, Hamamura T. Effects of manipulated density of the wolf spider, Pardosa astrigera (Araneae: Lycosidae), on pest populations and cabbage yields: a field enclosure experiment. Appl. Entomol. Zool. 2015;50:89–97. doi: 10.1007/s13355-014-0310-y. DOI

Tahir HM, Butt A. Predatory potential of three hunting spiders inhabiting the rice ecosystems. J. Pest Sci. 2009;82:217–225. doi: 10.1007/s10340-008-0242-9. DOI

Schmidt MH, Thewes U, Thies C, Tscharntke T. Aphid suppression by natural enemies in mulched cereals. Entomol. Exp. Appl. 2014;113:87–93. doi: 10.1111/j.0013-8703.2004.00205.x. DOI

Birkhofer K, et al. Custorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 2008;98:249–255. doi: 10.1017/S0007485308006019. PubMed DOI

Kuusk AK, Ekbom B. Feeding habits of lycosid spiders in field habitats. J. Pest Sci. 2012;85:253–260. doi: 10.1007/s10340-012-0431-4. DOI

Samu F, Sunderland KD, Szinetár C. Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: a review. J. Arachnol. 1999;27:325–332.

Schmidt MH, Roschewitz I, Thies C, Tscharntke T. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 2005;42:281–287. doi: 10.1111/j.1365-2664.2005.01014.x. DOI

Samu F, Vollrath F. Spider orb web as bioassay for pesticide side effects. Entomol. Exp. Appl. 1992;62:117–124. doi: 10.1111/j.1570-7458.1992.tb00650.x. DOI

Lengwiler U, Benz G. Effects of selected pesticides on web building behaviour of Larinioides sclopetarius (Clerck) (Araneae, Araneidae) J. Appl. Entomol. 1994;117:99–108. doi: 10.1111/j.1439-0418.1994.tb00713.x. DOI

Shaw EM, Wheater CP, Langan AM. The effects of cypermethrin on Tenuiphantes tenuis (Blackwall, 1852): development of a technique for assessing the impact of pesticides on web building in spiders (Araneae: Linyphiidae) Acta Zool. Bulg. 2005;57(Suppl. 1):173–179.

Benamú MA, Schneider MI, Pineda S, Sánchez NE, Gonzales A. Sublethal effects of two neurotoxican insecticides on Araneus pratensis (Araneae: Araneidae) Commun. Agric. Appl. Biol. Sci. 2007;72:557–559. PubMed

Benamú MA, Schneider MI, Sánchez NE. Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere. 2010;78:871–876. doi: 10.1016/j.chemosphere.2009.11.027. PubMed DOI

Benamú MA, Schneider MI, Gonzales A, Sánchez NE. Short and long-term effects of three neurotoxic insecticides on biological and behavioural attributes of the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. Ecotoxicology. 2013;22:1155–1164. doi: 10.1007/s10646-013-1102-9. PubMed DOI

Simon-Delso N, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. Int. 2015;22:5–34. doi: 10.1007/s11356-014-3470-y. PubMed DOI PMC

Meng XK, Zhang YX, Bao HB, Liu ZW. Sequence analysis of insecticide action and detoxification-related genes in the insect pest natural enemy Pardosa pseudoannulata. PLoS ONE. 2015;10:e0125242. doi: 10.1371/journal.pone.0125242. PubMed DOI PMC

Bao HB, Meng XK, Liu ZW. Spider acetylcholine binding proteins: an alternative model to study the interaction between insect nAchRs and neonicotinoids. Insect Biochem. Mol. Biol. 2017;90:82–89. doi: 10.1016/j.ibmb.2017.09.014. PubMed DOI

Song Feng, You Zhiqi, Yao Xiangmei, Cheng Jiagao, Liu Zewen, Lin Kejian. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata. Insect Biochemistry and Molecular Biology. 2009;39(11):833–841. doi: 10.1016/j.ibmb.2009.09.009. PubMed DOI

Yamamoto, I. Nicotine to nicotinoids: 1962 to 1997 in Nicotinoid insecticides and the nicotinic acetylcholine receptor (eds. Yamamoto, I., Casida, J.) 3–27 & 271–292 (Springer Verlag, Tokyo, 1999).

Gallé R, et al. Small-scale agricultural landscapes promote spider and ground beetle densities by offering suitable overwintering sites. Landsc. Ecol. 2018;33:1435–1446. doi: 10.1007/s10980-018-0677-1. DOI

Reed DH, Teoh VH, Stratton GE, Hataway RA. Levels of gene flow among populations of a wolf spider in a recently fragmented habitat: current versus historical rates. Conserv. Genet. 2011;12:331–335. doi: 10.1007/s10592-009-9995-9. DOI

Pluess T, Opatovsky I, Gavish-Regev E, Lubin Y, Schmidt-Entling MH. Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. Agr. Ecosyst. Environ. 2010;137:68–74. doi: 10.1016/j.agee.2009.12.020. DOI

Schmidt MH, Tscharntke T. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J. Biogeogr. 2005;32:467–473. doi: 10.1111/j.1365-2699.2004.01244.x. DOI

Schmidt MH, Thies C, Nentwig W, Tscharntke T. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 2008;35:157–166.

Bonte D, Travis JMJ, De Clercq N, Zwertvaegher I, Lens L. Thermal conditions during juvenile development affect adult dispersal in a spider. Proc. Natl. Acad. Sci. USA. 2008;105:17000–17005. doi: 10.1073/pnas.0806830105. PubMed DOI PMC

Meijer J. The immigration of spiders (Araneida) into a new polder. Ecol. Entomol. 1977;2:81–90. doi: 10.1111/j.1365-2311.1977.tb00867.x. DOI

Crawford R, Sugg P, Edvards J. Spider arrival and primary established on terrain depopulated by volcanic eruption at Mount St. Helens, Washington. Am. Midl. Nat. 1995;133:60–75. doi: 10.2307/2426348. DOI

Petillon JJ, Deruytter D, Decae A, Renault D, Bonte D. Habitat use, but not dispersal limitation, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim. Biol. 2012;62:181–192. doi: 10.1163/157075611X617094. DOI

Foelix, R. F. Biology of spiders (Oxford University Press, Oxford, 2011).

Benamú M, et al. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. Chemosphere. 2017;181:241–249. doi: 10.1016/j.chemosphere.2017.04.079. PubMed DOI

Chen XQ, Xiao Y, Wu LB, Chen YF, Peng Y. Imidacloprid affects Pardosa pseudoannulata adults and their unexposed offspring. Bull. Environ. Contam. Toxicol. 2012;88:654–658. doi: 10.1007/s00128-012-0584-0. PubMed DOI

Hakeem A, et al. Influence of imidacloprid and horticultural oil on spider abundance on Eastern Hemlock in the Southern Appalachians. Environ. Entomol. 2018;47:951–959. doi: 10.1093/ee/nvy065. PubMed DOI

Youn YN, Seo MJ, Shin JG, Jang C, Yu YM. Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae) Biol. Control. 2003;28:164–170. doi: 10.1016/S1049-9644(03)00098-7. DOI

Villanueva RT, Walgenbach JF. Development, oviposition, and mortality of Neoseiulus fallacis (Acari: Phytoseiidae) in response to reduced-risk insecticides. J. Econ. Entomol. 2005;98:2114–2120. doi: 10.1093/jee/98.6.2114. PubMed DOI

Moser SE, Obrycki JJ. Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol. Control. 2009;51:487–492. doi: 10.1016/j.biocontrol.2009.09.001. DOI

Baker, P., Haylock, L.A., Gamer, B.H., Sands, R.J.N. & Dewar, A.M. The effects of insecticide seed treatments on beneficial invertebrates in sugar beet in BCPC Conference – Pests & Diseases 2 653–658 (British Crop Protection Council, Farnham, 2002).

Clymans, R., Vrancken, K., Bylemans, D. & Belien, T. Side-effects on spiders of plant protection products commonly used during spring and autumn in Belgian pear production in XII International Pear Symposium (eds Deckers, T. & Vercammen, J.). Acta Horticult. 1094, 451–456 (2015).

Zhu J, et al. Selective toxicity of the mesoionic insecticide, triflumezopyrim, to rice planthoppers and beneficial arthropods. Ecotoxicology. 2018;27:411–419. doi: 10.1007/s10646-018-1904-x. PubMed DOI

Řezáč M, Pekár S, Stará J. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. BioControl. 2010;55:503–510. doi: 10.1007/s10526-010-9272-3. DOI

Ghosal A, Chatterjee ML, Bhattacharyya A. Bio-efficacy of neonicotinoids against Aphis gossypii Glover of okra. J. Crop Weed. 2013;9:181–184.

James DG, Vogele B. The effects of imidacloprid on survival of some beneficial arthropods. Plant Prot. Quart. 2001;16:58–62.

Inglesfield, C. Lepthyphantes tenuis Blackwall (Linyphiidae, Araneae). In: Hassan, S.A. (Ed.) Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working group “Pesticides and beneficial organisms”. OEPP/EPPO Bull. 15, 233 (1985).

BBA. Richtlinien für die Prüfung von Pflanzenschutzmitteln (Nr. VI, 23-2.1.9) Richtlinien für der Auswirkungen von Pflanzenschutzmitteln auf Spinnen der Gattung Pardosa spp. (Araneae, Lycosidae) im Laboratorium. Biologisch Bundesanstalt für Land und Forstwirtschaft, Braunschweig (1993).

CSTEE. Scientific committee on toxicity, ecotoxicity and the environment (CSTEE) opinion on the available scientific approaches to assess the potential effects and risk of chemicals on terrestrial ecosystems. CSTEE plenary meeting. (European commission, Brussels, 2000).

Heimbach, U. et al. A method for testing effects of plant protection products on spiders of the genus Pardosa (Araneae, Lycosidae) under laboratory conditions in Guidelines to evaluate side-effects of plant protection products to non-target arthropods (ed. Candolfi, M.P.) 71–86 (IOBC/WPRS, Gent, 2000).

Candolfi, M. P. et al. Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods in ESCORT 2 workshop (SETAC Europe, Wageningen, 2001).

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...