Neonicotinoid insecticides limit the potential of spiders to re-colonize disturbed agroecosystems when using silk-mediated dispersal
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31439878
PubMed Central
PMC6706445
DOI
10.1038/s41598-019-48729-6
PII: 10.1038/s41598-019-48729-6
Knihovny.cz E-resources
- MeSH
- Ecosystem * MeSH
- Farms * MeSH
- Silk metabolism MeSH
- Insecticides pharmacology MeSH
- Neonicotinoids pharmacology MeSH
- Spiders metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Silk MeSH
- Insecticides MeSH
- Neonicotinoids MeSH
Agroecosystems are subject to regular disturbances that cause extinction or migration of much of their fauna, followed by recolonization from surrounding refuges. In small-sized aeronaut spiders, such recolonization is potentiated by their ability to rappel and balloon. These are complex behaviors that we hypothesized to be affected by neurotoxins, namely, neonicotinoids. We tested this hypothesis using two common farmland spider species, Oedothorax apicatus (Linyphiidae) and Phylloneta impressa (Theridiidae). The spiders were topically exposed by dorsal wet application or tarsal dry exposure to commercial neonicotinoid formulations Actara 25 WG, Biscaya 240 OD, Mospilan 20 SP and Confidor 200 OD at concentrations that are recommended for application in agriculture. Contact exposure to neonicotinoids suppressed the ability of spiders to produce the major ampullate fiber and anchor it to the substratum by piriform fibrils. Contact exposure to neonicotinoids also suppressed the ballooning behavior that was manifested by climbing to elevated places, adopting a tiptoe position and producing silk gossamer in the wind. Impaired ability of affected common farmland spiders to quickly recolonize disturbed agroecosystems by silk-mediated dispersal may explain their decline in multiple farmland ecosystems, in which neonicotinoids are applied.
Biodiversity Lab Crop Research Institute Drnovská 507 Prague CZ 16106 Czechia
Charles University 3rd Faculty of Medicine Ruská 87 Prague CZ 100 00 Czechia
Czech Academy of Sciences Institute of Microbiology Vídeňská 1083 Prague CZ 142 20 Czechia
See more in PubMed
Cizek O, Zamecnik J, Tropek R, Kocarek P, Konvicka M. Diversification of mowing regime increases arthropods diversity in species-poor cultural hay meadows. J. Insect Conserv. 2012;16:215–226. doi: 10.1007/s10841-011-9407-6. DOI
Pech P, Dolanský J, Hrdlička R, Lepš J. Differential response of communities of plants, snails, ants and spiders to long-term mowing in a small-scale experiment. Commun. Ecol. 2015;16:115–124. doi: 10.1556/168.2015.16.1.13. DOI
Haskins MF, Shaddy JH. The ecological effects of burning, mowing, and plowing on ground-inhabiting spiders (Araneae) in an old-field ecosystem. J. Arachnol. 1986;14:1–13.
Nyffeler M, Sterling WL, Dean DA. How spiders make a living. Environ. Entomol. 1994;23:1357–1367. doi: 10.1093/ee/23.6.1357. DOI
Humbert JY, Ghazoul J, Richner N, Walter T. Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol. Conserv. 2012;152:96–101. doi: 10.1016/j.biocon.2012.03.015. DOI
Šálek M, et al. Edges within farmland: Management implications of taxon specific species richness correlates. Basic Appl. Ecol. 2015;16:714–725. doi: 10.1016/j.baae.2015.08.001. DOI
Řezáč M, Heneberg P. Effects of uncut hay meadow strips on spiders. Biologia. 2018;73:43–51. doi: 10.2478/s11756-018-0015-8. DOI
Halley JM, Thomas CFG, Jepson PC. A model for the spatial dynamics of linyphiid spiders in farmland. J. Appl. Ecol. 1996;33:471–492. doi: 10.2307/2404978. DOI
Isaia, M., Beikes, S., Paschetta, M., Sarvajayakesevalu, S. & Badino, G. Spiders as potential biological controllers in apple orchards infested by Cydia spp. (Lepidoptera: Tortricidae) in Proceedings of 24thEuropean Congress of Arachnology (eds Nentwig, W., Entling, M., Kropf, C.) 25–29 (Bern, 2010).
Pekár S, Michalko R, Loverre P, Líznarová E, Černecká Ľ. Biological control in winter: novel evidence for the importance of generalist predators. J. Appl. Ecol. 2015;52:270–279. doi: 10.1111/1365-2664.12363. DOI
Suenaga H, Hamamura T. Effects of manipulated density of the wolf spider, Pardosa astrigera (Araneae: Lycosidae), on pest populations and cabbage yields: a field enclosure experiment. Appl. Entomol. Zool. 2015;50:89–97. doi: 10.1007/s13355-014-0310-y. DOI
Tahir HM, Butt A. Predatory potential of three hunting spiders inhabiting the rice ecosystems. J. Pest Sci. 2009;82:217–225. doi: 10.1007/s10340-008-0242-9. DOI
Schmidt MH, Thewes U, Thies C, Tscharntke T. Aphid suppression by natural enemies in mulched cereals. Entomol. Exp. Appl. 2014;113:87–93. doi: 10.1111/j.0013-8703.2004.00205.x. DOI
Birkhofer K, et al. Custorial spiders retard initial aphid population growth at low densities in winter wheat. Bull. Entomol. Res. 2008;98:249–255. doi: 10.1017/S0007485308006019. PubMed DOI
Kuusk AK, Ekbom B. Feeding habits of lycosid spiders in field habitats. J. Pest Sci. 2012;85:253–260. doi: 10.1007/s10340-012-0431-4. DOI
Samu F, Sunderland KD, Szinetár C. Scale-dependent dispersal and distribution patterns of spiders in agricultural systems: a review. J. Arachnol. 1999;27:325–332.
Schmidt MH, Roschewitz I, Thies C, Tscharntke T. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 2005;42:281–287. doi: 10.1111/j.1365-2664.2005.01014.x. DOI
Samu F, Vollrath F. Spider orb web as bioassay for pesticide side effects. Entomol. Exp. Appl. 1992;62:117–124. doi: 10.1111/j.1570-7458.1992.tb00650.x. DOI
Lengwiler U, Benz G. Effects of selected pesticides on web building behaviour of Larinioides sclopetarius (Clerck) (Araneae, Araneidae) J. Appl. Entomol. 1994;117:99–108. doi: 10.1111/j.1439-0418.1994.tb00713.x. DOI
Shaw EM, Wheater CP, Langan AM. The effects of cypermethrin on Tenuiphantes tenuis (Blackwall, 1852): development of a technique for assessing the impact of pesticides on web building in spiders (Araneae: Linyphiidae) Acta Zool. Bulg. 2005;57(Suppl. 1):173–179.
Benamú MA, Schneider MI, Pineda S, Sánchez NE, Gonzales A. Sublethal effects of two neurotoxican insecticides on Araneus pratensis (Araneae: Araneidae) Commun. Agric. Appl. Biol. Sci. 2007;72:557–559. PubMed
Benamú MA, Schneider MI, Sánchez NE. Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere. 2010;78:871–876. doi: 10.1016/j.chemosphere.2009.11.027. PubMed DOI
Benamú MA, Schneider MI, Gonzales A, Sánchez NE. Short and long-term effects of three neurotoxic insecticides on biological and behavioural attributes of the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. Ecotoxicology. 2013;22:1155–1164. doi: 10.1007/s10646-013-1102-9. PubMed DOI
Simon-Delso N, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. Int. 2015;22:5–34. doi: 10.1007/s11356-014-3470-y. PubMed DOI PMC
Meng XK, Zhang YX, Bao HB, Liu ZW. Sequence analysis of insecticide action and detoxification-related genes in the insect pest natural enemy Pardosa pseudoannulata. PLoS ONE. 2015;10:e0125242. doi: 10.1371/journal.pone.0125242. PubMed DOI PMC
Bao HB, Meng XK, Liu ZW. Spider acetylcholine binding proteins: an alternative model to study the interaction between insect nAchRs and neonicotinoids. Insect Biochem. Mol. Biol. 2017;90:82–89. doi: 10.1016/j.ibmb.2017.09.014. PubMed DOI
Song Feng, You Zhiqi, Yao Xiangmei, Cheng Jiagao, Liu Zewen, Lin Kejian. Specific loops D, E and F of nicotinic acetylcholine receptor β1 subunit may confer imidacloprid selectivity between Myzus persicae and its predatory enemy Pardosa pseudoannulata. Insect Biochemistry and Molecular Biology. 2009;39(11):833–841. doi: 10.1016/j.ibmb.2009.09.009. PubMed DOI
Yamamoto, I. Nicotine to nicotinoids: 1962 to 1997 in Nicotinoid insecticides and the nicotinic acetylcholine receptor (eds. Yamamoto, I., Casida, J.) 3–27 & 271–292 (Springer Verlag, Tokyo, 1999).
Gallé R, et al. Small-scale agricultural landscapes promote spider and ground beetle densities by offering suitable overwintering sites. Landsc. Ecol. 2018;33:1435–1446. doi: 10.1007/s10980-018-0677-1. DOI
Reed DH, Teoh VH, Stratton GE, Hataway RA. Levels of gene flow among populations of a wolf spider in a recently fragmented habitat: current versus historical rates. Conserv. Genet. 2011;12:331–335. doi: 10.1007/s10592-009-9995-9. DOI
Pluess T, Opatovsky I, Gavish-Regev E, Lubin Y, Schmidt-Entling MH. Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. Agr. Ecosyst. Environ. 2010;137:68–74. doi: 10.1016/j.agee.2009.12.020. DOI
Schmidt MH, Tscharntke T. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J. Biogeogr. 2005;32:467–473. doi: 10.1111/j.1365-2699.2004.01244.x. DOI
Schmidt MH, Thies C, Nentwig W, Tscharntke T. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J. Biogeogr. 2008;35:157–166.
Bonte D, Travis JMJ, De Clercq N, Zwertvaegher I, Lens L. Thermal conditions during juvenile development affect adult dispersal in a spider. Proc. Natl. Acad. Sci. USA. 2008;105:17000–17005. doi: 10.1073/pnas.0806830105. PubMed DOI PMC
Meijer J. The immigration of spiders (Araneida) into a new polder. Ecol. Entomol. 1977;2:81–90. doi: 10.1111/j.1365-2311.1977.tb00867.x. DOI
Crawford R, Sugg P, Edvards J. Spider arrival and primary established on terrain depopulated by volcanic eruption at Mount St. Helens, Washington. Am. Midl. Nat. 1995;133:60–75. doi: 10.2307/2426348. DOI
Petillon JJ, Deruytter D, Decae A, Renault D, Bonte D. Habitat use, but not dispersal limitation, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. Anim. Biol. 2012;62:181–192. doi: 10.1163/157075611X617094. DOI
Foelix, R. F. Biology of spiders (Oxford University Press, Oxford, 2011).
Benamú M, et al. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure. Chemosphere. 2017;181:241–249. doi: 10.1016/j.chemosphere.2017.04.079. PubMed DOI
Chen XQ, Xiao Y, Wu LB, Chen YF, Peng Y. Imidacloprid affects Pardosa pseudoannulata adults and their unexposed offspring. Bull. Environ. Contam. Toxicol. 2012;88:654–658. doi: 10.1007/s00128-012-0584-0. PubMed DOI
Hakeem A, et al. Influence of imidacloprid and horticultural oil on spider abundance on Eastern Hemlock in the Southern Appalachians. Environ. Entomol. 2018;47:951–959. doi: 10.1093/ee/nvy065. PubMed DOI
Youn YN, Seo MJ, Shin JG, Jang C, Yu YM. Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae) Biol. Control. 2003;28:164–170. doi: 10.1016/S1049-9644(03)00098-7. DOI
Villanueva RT, Walgenbach JF. Development, oviposition, and mortality of Neoseiulus fallacis (Acari: Phytoseiidae) in response to reduced-risk insecticides. J. Econ. Entomol. 2005;98:2114–2120. doi: 10.1093/jee/98.6.2114. PubMed DOI
Moser SE, Obrycki JJ. Non-target effects of neonicotinoid seed treatments; mortality of coccinellid larvae related to zoophytophagy. Biol. Control. 2009;51:487–492. doi: 10.1016/j.biocontrol.2009.09.001. DOI
Baker, P., Haylock, L.A., Gamer, B.H., Sands, R.J.N. & Dewar, A.M. The effects of insecticide seed treatments on beneficial invertebrates in sugar beet in BCPC Conference – Pests & Diseases 2 653–658 (British Crop Protection Council, Farnham, 2002).
Clymans, R., Vrancken, K., Bylemans, D. & Belien, T. Side-effects on spiders of plant protection products commonly used during spring and autumn in Belgian pear production in XII International Pear Symposium (eds Deckers, T. & Vercammen, J.). Acta Horticult. 1094, 451–456 (2015).
Zhu J, et al. Selective toxicity of the mesoionic insecticide, triflumezopyrim, to rice planthoppers and beneficial arthropods. Ecotoxicology. 2018;27:411–419. doi: 10.1007/s10646-018-1904-x. PubMed DOI
Řezáč M, Pekár S, Stará J. The negative effect of some selective insecticides on the functional response of a potential biological control agent, the spider Philodromus cespitum. BioControl. 2010;55:503–510. doi: 10.1007/s10526-010-9272-3. DOI
Ghosal A, Chatterjee ML, Bhattacharyya A. Bio-efficacy of neonicotinoids against Aphis gossypii Glover of okra. J. Crop Weed. 2013;9:181–184.
James DG, Vogele B. The effects of imidacloprid on survival of some beneficial arthropods. Plant Prot. Quart. 2001;16:58–62.
Inglesfield, C. Lepthyphantes tenuis Blackwall (Linyphiidae, Araneae). In: Hassan, S.A. (Ed.) Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working group “Pesticides and beneficial organisms”. OEPP/EPPO Bull. 15, 233 (1985).
BBA. Richtlinien für die Prüfung von Pflanzenschutzmitteln (Nr. VI, 23-2.1.9) Richtlinien für der Auswirkungen von Pflanzenschutzmitteln auf Spinnen der Gattung Pardosa spp. (Araneae, Lycosidae) im Laboratorium. Biologisch Bundesanstalt für Land und Forstwirtschaft, Braunschweig (1993).
CSTEE. Scientific committee on toxicity, ecotoxicity and the environment (CSTEE) opinion on the available scientific approaches to assess the potential effects and risk of chemicals on terrestrial ecosystems. CSTEE plenary meeting. (European commission, Brussels, 2000).
Heimbach, U. et al. A method for testing effects of plant protection products on spiders of the genus Pardosa (Araneae, Lycosidae) under laboratory conditions in Guidelines to evaluate side-effects of plant protection products to non-target arthropods (ed. Candolfi, M.P.) 71–86 (IOBC/WPRS, Gent, 2000).
Candolfi, M. P. et al. Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods in ESCORT 2 workshop (SETAC Europe, Wageningen, 2001).