Electro-detachment of kinesin motor domain from microtubule in silico
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36814722
PubMed Central
PMC9939557
DOI
10.1016/j.csbj.2023.01.018
PII: S2001-0370(23)00019-3
Knihovny.cz E-zdroje
- Klíčová slova
- Electric field, Microtubules, Molecular dynamics simulation, Proteins, Tubulin,
- Publikační typ
- časopisecké články MeSH
Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 μs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the β-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.
Zobrazit více v PubMed
Miki H., Okada Y., Hirokawa N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 2005;15:467–476. doi: 10.1016/j.tcb.2005.07.006. 〈https://www.sciencedirect.com/science/article/pii/S0962892405001820〉 PubMed DOI
Verhey K.J., Hammond J.W. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol. 2009;10:765–777. doi: 10.1038/nrm2782. 〈http://www.nature.com/articles/nrm2782〉 PubMed DOI
Wordeman L. How kinesin motor proteins drive mitotic spindle function: Lessons from molecular assays. Semin Cell Dev Biol. 2010;21:260–268. doi: 10.1016/j.semcdb.2010.01.018. 〈https://www.sciencedirect.com/science/article/pii/S1084952110000194〉 PubMed DOI PMC
Fan R., Lai K.-O. Understanding how kinesin motor proteins regulate postsynaptic function in neuron. FEBS J. 2022;289:2128–2144. doi: 10.1111/febs.16285. PubMed DOI
Hancock W.O. The kinesin-1 chemomechanical cycle: stepping toward a consensus. Biophys J. 2016;110:1216–1225. doi: 10.1016/j.bpj.2016.02.025. 〈http://linkinghub.elsevier.com/retrieve/pii/S0006349516002137〉 PubMed DOI PMC
Chandrasekaran G., Tátrai P., Gergely F. Hitting the brakes: targeting microtubule motors in cancer. Br J Cancer. 2015;113:693–698. doi: 10.1038/bjc.2015.264. 〈https://www.nature.com/articles/bjc2015264〉 bandiera_abtest: a Cc_license_type: cc_y Cg_type: Nature Research Journals Number: 5 Primary_atype: Reviews Publisher: Nature Publishing Group Subject_term: Chemotherapy; Kinesin;Microtubules;Mitosis Subject_term_id: chemotherapy;kinesin; microtubules;mitosis. PubMed DOI PMC
Musumeci O., Bassi M.T., Mazzeo A., Grandis M., Crimella C., Martinuzzi A., et al. A novel mutation in KIF5A gene causing hereditary spastic paraplegia with axonal neuropathy. Neurol Sci. 2011;32:665–668. doi: 10.1007/s10072-010-0445-8. PubMed DOI
Goizet C., Boukhris A., Mundwiller E., Tallaksen C., Forlani S., Toutain A., et al. Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10. Hum Mutat. 2009;30:E376–E385. doi: 10.1002/humu.20920. PubMed DOI
Hess H., Howard J., Vogel V. A Piconewton forcemeter assembled from microtubules and kinesins. Nano Lett. 2002;2:1113–1115. doi: 10.1021/nl025724i. DOI
Nitzsche B., Ruhnow F., Diez S. Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nat Nanotechnol. 2008;3:552–556. doi: 10.1038/nnano.2008.216. PubMed DOI
Isozaki N., Shintaku H., Kotera H., Hawkins T.L., Ross J.L., Yokokawa R. Control of molecular shuttles by designing electrical and mechanical properties of microtubules. Sci Robot. 2017;2 doi: 10.1126/scirobotics.aan4882. PubMed DOI
Nicolau D.V., Lard M., Korten T., van Delft F.C.M.J.M., Persson M., Bengtsson E., et al. Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proc Natl Acad Sci USA. 2016;113:2591–2596. doi: 10.1073/pnas.1510825113. PubMed DOI PMC
Grant B.J., Gheorghe D.M., Zheng W., Alonso M., Huber G., Dlugosz M., et al. Electrostatically biased binding of kinesin to microtubules. PLOS Biol. 2011;9 doi: 10.1371/journal.pbio.1001207. PubMed DOI PMC
Tsai M.-Y., Zheng W., Balamurugan D., Schafer N.P., Kim B.L., Cheung M.S., et al. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding: electrostatic Energy Landscapes for Folding and Binding. Protein Sci. 2016;25:255–269. doi: 10.1002/pro.2751. PubMed DOI PMC
Fried S.D., Bagchi S., Boxer S.G. Extreme electric fields power catalysis in the active site of ketosteroid isomerase. Science. 2014;346:1510–1514. PubMed PMC
Li L., Jia Z., Peng Y., Godar S., Getov I., Teng S., et al. Forces and disease: electrostatic force differences caused by mutations in kinesin motor domains can distinguish between disease-causing and non-disease-causing mutations. Sci Rep. 2017;7:8237. doi: 10.1038/s41598-017-08419-7. 〈http://www.nature.com/articles/s41598-017-08419-7〉 PubMed DOI PMC
Zhang Z., Witham S., Alexov E. On the role of electrostatics in protein–protein interactions. Phys Biol. 2011;8 doi: 10.1088/1478-3975/8/3/035001. 〈http://stacks.iop.org/1478-3975/8/i=3/a=035001?key=crossref.77ff819e2185726797249d4b9bc237c4〉 PubMed DOI PMC
Ciudad A., Sancho J.M., Tsironis G.P. Kinesin as an electrostatic machine. J Biol Phys. 2007;32:455–463. doi: 10.1007/s10867-006-9028-6. PubMed DOI PMC
Hekstra D.R., White K.I., Socolich M.A., Henning R.W., Šrajer V., Ranganathan R. Electric-field-stimulated protein mechanics. Nature. 2016;540:400–405. doi: 10.1038/nature20571. 〈https://www.nature.com/articles/nature20571〉 PubMed DOI PMC
Ho S.Y., Mittal G.S., Cross J.D. Effects of high field electric pulses on the activity of selected enzymes. J Food Eng. 1997;31:69–84. doi: 10.1016/S0260-8774(96)00052-0. 〈https://www.sciencedirect.com/science/article/pii/S0260877496000520〉 DOI
Marracino P., Havelka D., Průša J., Liberti M., Tuszynski J., Ayoub A.T., et al. Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep. 2019;9 doi: 10.1038/s41598-019-46636-4. PubMed DOI PMC
Jiang Z., You L., Dou W., Sun T., Xu P. Effects of an electric field on the conformational transition of the protein: a molecular dynamics simulation study. Polymers. 2019;11:282. doi: 10.3390/polym11020282. 〈https://www.mdpi.com/2073-4360/11/2/282〉 number: 2 Publisher: Multidisciplinary Digital Publishing Institute. PubMed DOI PMC
Průša J., Ayoub A.T., Chafai D.E., Havelka D., Cifra M. Electro-opening of a microtubule lattice in silico. Comput Struct Biotechnol J. 2021;19:1488–1496. doi: 10.1016/j.csbj.2021.02.007. 〈https://www.sciencedirect.com/science/article/pii/S2001037021000581〉 PubMed DOI PMC
English N.J., Mooney D.A. Denaturation of hen egg white lysozyme in electromagnetic fields: a molecular dynamics study. J Chem Phys. 2007;126 doi: 10.1063/1.2515315. PubMed DOI
English N.J., Waldron C.J. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys. 2015;17:12407–12440. doi: 10.1039/C5CP00629E. 〈http://xlink.rsc.org/?DOI=C5CP00629E〉 PubMed DOI
Zhao W., Yang R. Experimental study on conformational changes of lysozyme in solution induced by pulsed electric field and thermal stresses. J Phys Chem B. 2010;114:503–510. doi: 10.1021/jp9081189. PubMed DOI
Zhang S., Sun L., Ju H., Bao Z., Zeng X.-a., Lin S. Research advances and application of pulsed electric field on proteins and peptides in food. Food Res Int. 2021;139 doi: 10.1016/j.foodres.2020.109914. 〈https://www.sciencedirect.com/science/article/pii/S096399692030939X〉 PubMed DOI
Chafai D.E., Sulimenko V., Havelka D., Kubínová L., Dráber P., Cifra M. Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater. 2019;31 doi: 10.1002/adma.201903636. PubMed DOI
Urabe G., Sato T., Nakamura G., Kobashigawa Y., Morioka H., Katsuki S. 1.2 MV/cm pulsed electric fields promote transthyretin aggregate degradation. Sci Rep. 2020;10 doi: 10.1038/s41598-020-68681-0. 〈http://www.nature.com/articles/s41598-020-68681-0〉 PubMed DOI PMC
Havelka D., Zhernov I., Teplan M., Lánský Z., Chafai D.E., Cifra M. Lab-on-chip microscope platform for electro-manipulation of a dense microtubules network. Sci Rep. 2022;12:2462. doi: 10.1038/s41598-022-06255-y. 〈https://www.nature.com/articles/s41598-022-06255-y〉 PubMed DOI PMC
van den Heuvel M.G.L., Butcher C.T., Lemay S.G., Diez S., Dekker C. Electrical docking of microtubules for kinesin-driven motility in nanostructures. Nano Lett. 2005;5:235–241. doi: 10.1021/nl048291n. PubMed DOI
Van den Heuvel M.G.L., De Graaff M.P., Dekker C. Microtubule curvatures under perpendicular electric forces reveal a low persistence length. Proc Natl Acad Sci USA. 2008;105:7941–7946. 〈http://www.pnas.org/content/105/23/7941.short〉 PubMed PMC
Timmons J.J., Preto J., Tuszynski J.A., Wong E.T. Tubulin’s response to external electric fields by molecular dynamics simulations. PLOS One. 2018;13 doi: 10.1371/journal.pone.0202141. PubMed DOI PMC
Saeidi H.R., Setayandeh S.S., Lohrasebi A. Molecular modeling of oscillating GHz electric field influence on the kinesin affinity to microtubule. Chin Phys B. 2015;24 doi: 10.1088/1674-1056/24/8/080701. 〈http://stacks.iop.org/1674-1056/24/i=8/a=080701?key=crossref.cb55b206152a211a6b1dd1db58ea5872〉 DOI
Setayandeh S.S., Lohrasebi A. Flexibility and kinesin affinity of paclitaxel stabilized microtubule under the influence of GHz electric fields: a molecular modeling approach. J Nanosci Nanotechnol. 2018;18:7902–7906. doi: 10.1166/jnn.2018.15531. DOI
Průša J., Cifra M. Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci Rep. 2019;9 doi: 10.1038/s41598-019-56052-3. 〈http://www.nature.com/articles/s41598-019-56052-3〉 PubMed DOI PMC
Verhey K.J., Kaul N., Soppina V. Kinesin assembly and movement in cells. Annu Rev Biophys. 2011;40:267–288. doi: 10.1146/annurev-biophys-042910-155310. PubMed DOI
Brendza R.P., Serbus L.R., Duffy J.B., Saxton W.M. A function for kinesin i in the posterior transport of oskar mRNA and Staufen protein. Science. 2000;289:2120–2122. 〈https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1764218/〉 PubMed PMC
Glater E.E., Megeath L.J., Stowers R.S., Schwarz T.L. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol. 2006;173:545–557. doi: 10.1083/jcb.200601067. PubMed DOI PMC
Palacios I.M., Johnston D.S. Kinesin light chain-independent function of the Kinesin heavy chain in cytoplasmic streaming and posterior localisation in theDrosophila oocyte. Development. 2002;129:5473–5485. doi: 10.1242/dev.00119. PubMed DOI
Jolly A.L., Kim H., Srinivasan D., Lakonishok M., Larson A.G., Gelfand V.I. Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proc Natl Acad Sci USA. 2010;107:12151–12156. doi: 10.1073/pnas.1004736107. PubMed DOI PMC
Chakraborty S., Zheng W. Decrypting the structural, dynamic, and energetic basis of a monomeric kinesin interacting with a tubulin dimer in three ATPase states by all-atom molecular dynamics simulation. Biochemistry. 2015;54:859–869. doi: 10.1021/bi501056h. PubMed DOI
Ayoub A.T., Klobukowski M., Tuszynski J.A. Detailed per-residue energetic analysis explains the driving force for microtubule disassembly. PLOS Comput Biol. 2015;11 doi: 10.1371/journal.pcbi.1004313. PubMed DOI PMC
Hub J.S., de Groot B.L., van der Spoel D. g_wham – a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput. 2010;6:3713–3720. doi: 10.1021/ct100494z. (publisher: American Chemical Society) DOI
Tyner K.M., Kopelman R., Philbert M.A. Nanosized voltmeter enables cellular-wide electric field mapping. Biophys J. 2007;93:1163–1174. doi: 10.1529/biophysj.106.092452. 〈http://linkinghub.elsevier.com/retrieve/pii/S0006349507713747〉 PubMed DOI PMC
Slocum J.D., Webb L.J. Measuring electric fields in biological matter using the vibrational Stark effect of nitrile probes. Annu Rev Phys Chem. 2018;69:253–271. PubMed
Isojima H., Iino R., Niitani Y., Noji H., Tomishige M. Direct observation of intermediate states during the stepping motion of kinesin-1. Nat Chem Biol. 2016;12:290–297. doi: 10.1038/nchembio.2028. PubMed DOI
Ramaiya A., Roy B., Bugiel M., Schäffer E. Kinesin rotates unidirectionally and generates torque while walking on microtubules. Proc Natl Acad Sci USA. 2017;114:10894–10899. doi: 10.1073/pnas.1706985114. PubMed DOI PMC
Kushwaha V.S., Peterman E.J.G. The temperature dependence of kinesin motor-protein mechanochemistry. Biochem Biophys Res Commun. 2020;529:812–818. doi: 10.1016/j.bbrc.2020.06.004. 〈https://www.sciencedirect.com/science/article/pii/S0006291×20311980〉 PubMed DOI
Schnitzer M.J., Visscher K., Block S.M. Force production by single kinesin motors. Nat Cell Biol. 2000;2:718–723. doi: 10.1038/35036345. 〈http://www.nature.com/articles/ncb1000_718〉 PubMed DOI
Kuo T.-L., Garcia-Manyes S., Li J., Barel I., Lu H., Berne B.J., et al. Probing static disorder in Arrhenius kinetics by single-molecule force spectroscopy. Proc Natl Acad Sci USA. 2010;107:11336–11340. doi: 10.1073/pnas.1006517107. 〈https://www.pnas.org/content/107/25/11336〉 (publisher: National Academy of Sciences Section: Biological Sciences) PubMed DOI PMC
Zarzycki P., Gilbert B. Temperature-Dependence of the Dielectric Relaxation of Water Using Non-Polarizable Water Models. Phys Chem Chem Phys. 2020 doi: 10.1039/C9CP04578C. PubMed DOI
Martin D.R., Friesen A.D., Matyushov D.V. Electric Field inside a ‘Rossky Cavity’ in Uniformly Polarized Water. J Chem Phys. 2011;135(8) PubMed
Kim A.J., Endow S.A. A kinesin family tree. J Cell Sci. 2000;113:3681–3682. doi: 10.1242/jcs.113.21.3681. PubMed DOI
Hirokawa N., Nitta R., Okada Y. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat Rev Mol Cell Biol. 2009;10:877–884. doi: 10.1038/nrm2807. 〈http://www.nature.com/articles/nrm2807〉 PubMed DOI
Schimert K.I., Budaitis B.G., Reinemann D.N., Lang M.J., Verhey K.J. Intracellular cargo transport by single-headed kinesin motors. Proc Natl Acad Sci USA. 2019;116:6152–6161. doi: 10.1073/pnas.1817924116. (publisher: Proceedings of the National Academy of Sciences) PubMed DOI PMC
Andreasson J.O., Milic B., Chen G.-Y., Guydosh N.R., Hancock W.O., Block S.M. Examining kinesin processivity within a general gating framework. eLife. 2015;4 doi: 10.7554/eLife.07403. (publisher: eLife Sciences Publications, Ltd) PubMed DOI PMC
Kühn S., Liu Q., Eing C., Frey W., Nick P. Nanosecond electric pulses affect a plant-specific kinesin at the plasma membrane. J Membr Biol. 2013;246:927–938. doi: 10.1007/s00232-013-9594-z. PubMed DOI
Uchimura S., Oguchi Y., Katsuki M., Usui T., Osada H., Nikawa J.-i., et al. Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin. EMBO J. 2006;25:5932–5941. doi: 10.1038/sj.emboj.7601442. 〈https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1698889/〉 PubMed DOI PMC
Braun M., Lansky Z., Szuba A., Schwarz F.W., Mitra A., Gao M., et al. Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding. Nat Chem Biol. 2017;13:1245. doi: 10.1038/nchembio.2495. PubMed DOI PMC
Bujak Ł., Holanová K., García Marín A., Henrichs V., Barvík I., Braun M., et al. Fast leaps between millisecond confinements govern Ase1 diffusion along microtubules. Small Methods. 2021;5 doi: 10.1002/smtd.202100370. PubMed DOI
Mickolajczyk K.J., Deffenbaugh N.C., OrtegaArroyo J., Andrecka J., Kukura P., Hancock W.O. Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle. Proc Natl Acad Sci USA. 2015;112:E7186–E7193. doi: 10.1073/pnas.1517638112. PubMed DOI PMC
Vala M., Bujak Ł., García Marín A., Holanová K., Henrichs V., Braun M., et al. Nanoscopic structural fluctuations of disassembling microtubules revealed by label-free super-resolution microscopy. Small Methods. 2021;5 doi: 10.1002/smtd.202000985. PubMed DOI
Robert H.M.L., Holanová K., Bujak Ł., Vala M., Henrichs V., Lánský Z., et al. Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale. Nat Commun. 2021;12:2921. doi: 10.1038/s41467-021-23252-3. 〈https://www.nature.com/articles/s41467-021-23252-3〉 number: 1 Publisher: Nature Publishing Group. PubMed DOI PMC
Havelka D., Chafai D.E., Krivosudský O., Klebanovych A., Vostárek F., Kubínová L., et al. Nanosecond pulsed electric field lab-on-chip integrated in super-resolution microscope for cytoskeleton imaging. Adv Mater Technol. 2020;5 doi: 10.1002/admt.201900669. DOI