Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29035362
PubMed Central
PMC5700410
DOI
10.1038/nchembio.2495
PII: nchembio.2495
Knihovny.cz E-zdroje
- MeSH
- kinetika MeSH
- kineziny chemie metabolismus MeSH
- lidé MeSH
- mikrotubuly chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kineziny MeSH
Microtubule-crosslinking motor proteins, which slide antiparallel microtubules, are required for the remodeling of microtubule networks. Hitherto, all microtubule-crosslinking motors have been shown to slide microtubules at a constant velocity until no overlap remains between them, leading to the breakdown of the initial microtubule geometry. Here, we show in vitro that the sliding velocity of microtubules, driven by human kinesin-14 HSET, decreases when microtubules start to slide apart, resulting in the maintenance of finite-length microtubule overlaps. We quantitatively explain this feedback using the local interaction kinetics of HSET with overlapping microtubules that cause retention of HSET in shortening overlaps. Consequently, the increased HSET density in the overlaps leads to a density-dependent decrease in sliding velocity and the generation of an entropic force that antagonizes the force exerted by the motors. Our results demonstrate that a spatial arrangement of microtubules can regulate the collective action of molecular motors through the local alteration of their individual interaction kinetics.
AMOLF Amsterdam the Netherlands
B CUBE Center for Molecular Bioengineering Technische Universität Dresden Dresden Germany
Institute of Biotechnology CAS BIOCEV Vestec Czech Republic
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Zobrazit více v PubMed
She Z-Y, Yang W-X. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci. 2017;130:2097–2110. PubMed
Cai S, Weaver LN, Ems-McClung SC, Walczak CE. Kinesin-14 Family Proteins HSET/XCTK2 Control Spindle Length by Cross-Linking and Sliding Microtubules. Mol Biol Cell. 2009;20:1348–1359. PubMed PMC
Goshima G, Nédélec F, Vale RD. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol. 2005;171:229–240. PubMed PMC
Lecland N, Lüders J. The dynamics of microtubule minus ends in the human mitotic spindle. Nat Cell Biol. 2014;16:770–778. PubMed
Kwon M, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 2008;22:2189–2203. PubMed PMC
Watts CA, et al. Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem Biol. 2013;20:1399–1410. PubMed PMC
deCastro M, Fondecave R, Clarke L, Schmidt CF, Stewart R. Working strokes by single molecules of the kinesin-related microtubule motor ncd. Nat Cell Biol. 2000;2:724–729. PubMed
Fink G, et al. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol. 2009;11:717–723. PubMed
Hentrich C, Surrey T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol. 2010;189:465–480. PubMed PMC
Braun M, Drummond DR, Cross RA, McAinsh AD. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat Cell Biol. 2009;11:724–730. PubMed
Kapitein LC, et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature. 2005;435:114–118. PubMed
Yamashita A. The Roles of Fission Yeast Ase1 in Mitotic Cell Division, Meiotic Nuclear Oscillation, and Cytokinesis Checkpoint Signaling. Mol Biol Cell. 2005;16:1378–1395. PubMed PMC
Janson ME, et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell. 2007;128:357–368. PubMed
Schuyler SC, Liu JY, Pellman D. The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol. 2003;160:517–528. PubMed PMC
Khmelinskii A, Roostalu J, Roque H, Antony C, Schiebel E. Phosphorylation-dependent protein interactions at the spindle midzone mediate cell cycle regulation of spindle elongation. Dev Cell. 2009;17:244–256. PubMed
Fu C, et al. Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev Cell. 2009;17:257–267. PubMed PMC
Cahu J, et al. Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. PLoS ONE. 2008;3:e3936. PubMed PMC
Mana-Capelli S, McLean JR, Chen C-T, Gould KL, McCollum D. The kinesin-14 Klp2 is negatively regulated by the SIN for proper spindle elongation and telophase nuclear positioning. Mol Biol Cell. 2012;23:4592–4600. PubMed PMC
Andrews PD, et al. Aurora B regulates MCAK at the mitotic centromere. Dev Cell. 2004;6:253–268. PubMed
Tao L, et al. A Homotetrameric Kinesin-5, KLP61F, Bundles Microtubules and Antagonizes Ncd in Motility Assays. Curr Biol. 2006;16:2293–2302. PubMed
Braun M, et al. Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat Cell Biol. 2011;13:1259–1264. PubMed
Lansky Z, et al. Diffusible crosslinkers generate directed forces in microtubule networks. Cell. 2015;160:1159–1168. PubMed
Johann D, Goswami D, Kruse K. Generation of Stable Overlaps between Antiparallel Filaments. Phys Rev Lett. 2015;115:118103. PubMed
Sturgill EG, et al. Kinesin-12 Kif15 targets kinetochore fibers through an intrinsic two-step mechanism. Curr Biol. 2014;24:2307–2313. PubMed PMC
Chandra R, Salmon ED, Erickson HP, Lockhart A, Endow SA. Structural and functional domains of the Drosophila ncd microtubule motor protein. J Biol Chem. 1993;268:9005–9013. PubMed
Lupas A, Van Dyke M, Stock J. Predicting coiled coils from protein sequences. Science. 1991;252:1162–1164. PubMed
Karabay A, Walker R. Identification of microtubule binding sites in the Ncd tail domain. Biochemistry. 1999;38:1838–1849. PubMed
Britto M, et al. Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism. Proceedings of the National Academy of Sciences. 2016;113:E7483–E7489. PubMed PMC
Mieck C, et al. Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3. Elife. 2015;4 PubMed PMC
Popchock AR, et al. The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun. 2017;8:13999. PubMed PMC
Düselder A, et al. Deletion of the Tail Domain of the Kinesin-5 Cin8 Affects Its Directionality. Journal of Biological Chemistry. 2015;290:16841–16850. PubMed PMC
Molodtsov MI, et al. A Force-Induced Directional Switch of a Molecular Motor Enables Parallel Microtubule Bundle Formation. Cell. 2016;167:539–552.e14. PubMed
Shapira O, Gheber L. Motile properties of the bi-directional kinesin-5 Cin8 are affected by phosphorylation in its motor domain. Sci Rep. 2016;6:25597. PubMed PMC
Braun M, et al. The human kinesin-14 HSET tracks the tips of growing microtubules in vitro. Cytoskeleton (Hoboken, NJ) 2013;70:515–521. PubMed
Ruhnow F, Zwicker D, Diez S. Tracking Single Particles and Elongated Filaments with Nanometer Precision. Biophys J. 2011;100:2820–2828. PubMed PMC