Anillin propels myosin-independent constriction of actin rings
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34321459
PubMed Central
PMC8319318
DOI
10.1038/s41467-021-24474-1
PII: 10.1038/s41467-021-24474-1
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- aktomyosin metabolismus MeSH
- buněčné dělení MeSH
- cytokineze MeSH
- Drosophila melanogaster metabolismus MeSH
- kontraktilní proteiny genetika metabolismus MeSH
- lidé MeSH
- mikrofilamenta metabolismus MeSH
- mikrofilamentové proteiny MeSH
- myosiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- aktomyosin MeSH
- anillin MeSH Prohlížeč
- ANLN protein, human MeSH Prohlížeč
- kontraktilní proteiny MeSH
- mikrofilamentové proteiny MeSH
- myosiny MeSH
Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.
B CUBE Center for Molecular Bioengineering TU Dresden Dresden Germany
Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
Institute of Biotechnology Czech Academy of Sciences BIOCEV Vestec Prague West Czechia
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Zobrazit více v PubMed
Schroeder TE. Cytokinesis: filaments in the cleavage furrow. Exp. Cell Res. 1968;53:272–318. doi: 10.1016/0014-4827(68)90373-X. PubMed DOI
Fujiwara K, Pollard TD. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J. Cell Biol. 1976;71:848–875. doi: 10.1083/jcb.71.3.848. PubMed DOI PMC
Pollard TD, O’Shaughnessy B. Molecular mechanism of cytokinesis. Annu. Rev. Biochem. 2019;88:12.1–29. doi: 10.1146/annurev-biochem-062917-012530. PubMed DOI PMC
DeKraker C, Boucher E, Mandato CA. Regulation and assembly of actomyosin contractile rings in cytokinesis and cell repair. Anat. Rec. 2018;301:2051–2066. doi: 10.1002/ar.23962. PubMed DOI
Mangione MC, Gould KL. Molecular form and function of the cytokinetic ring. J. Cell Sci. 2019;132:jcs226928. doi: 10.1242/jcs.226928. PubMed DOI PMC
Huxley HE, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954;173:973–976. doi: 10.1038/173973a0. PubMed DOI
Huxley AF, Niedergerke R. Structural changes in muscle during contraction. Nature. 1954;4412:971–973. doi: 10.1038/173971a0. PubMed DOI
Kamasaki T, Osumi M, Mabuchi I. Three-dimensional arrangement of F-actin in the contractile ring of fission yeast. J. Cell Biol. 2007;178:765–771. doi: 10.1083/jcb.200612018. PubMed DOI PMC
Ennomani H, et al. Architecture and connectivity govern actin network contractility. Curr. Biol. 2016;26:616–626. doi: 10.1016/j.cub.2015.12.069. PubMed DOI PMC
Murrell M, Oakes PW, Lenz M, Gardel ML. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 2015;16:486–498. doi: 10.1038/nrm4012. PubMed DOI PMC
Cheffings TH, Burroughs NJ, Balasubramanian MK. Actomyosin ring formation and tension generation in eukaryotic cytokinesis. Curr. Biol. 2016;26:R719–R737. doi: 10.1016/j.cub.2016.06.071. PubMed DOI
Davies T, et al. High-resolution temporal analysis reveals a functional timeline for the molecular regulation of cytokinesis. Dev. Cell. 2014;30:209–223. doi: 10.1016/j.devcel.2014.05.009. PubMed DOI PMC
Xue Z, Sokac AM. Back-to-back mechanisms drive actomyosin ring closure during Drosophila embryo cleavage. J. Cell Biol. 2016;215:335–344. doi: 10.1083/jcb.201608025. PubMed DOI PMC
Hammarton TC. Who needs a contractile actomyosin ring? The plethora of alternative ways to divide a protozoan parasite. Front. Cell. Infect. Microbiol. 2019;9:1–30. doi: 10.3389/fcimb.2019.00397. PubMed DOI PMC
Weirich KL, et al. Liquid behavior of cross-linked actin bundles. Proc. Natl Acad. Sci. USA. 2017;114:2131–2136. doi: 10.1073/pnas.1616133114. PubMed DOI PMC
Chen S, Markovich T, MacKintosh FC. Motor-free contractility in active gels. Phys. Rev. Lett. 2020;125:208101. doi: 10.1103/PhysRevLett.125.208101. PubMed DOI
Descovich CP, et al. Crosslinkers both drive and brake cytoskeletal remodeling and furrowing in cytokinesis. Mol. Biol. Cell. 2018;29:622–631. doi: 10.1091/mbc.E17-06-0392. PubMed DOI PMC
Bun P, Dmitrieff S, Belmonte JM, Nédélec FJ, Lénárt P. A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes. Elife. 2018;7:1–27. doi: 10.7554/eLife.31469. PubMed DOI PMC
Oelz DB, Rubinstein BY, Mogilner A. A combination of actin treadmilling and cross-linking drives contraction of random actomyosin arrays. Biophys. J. 2015;109:1818–1829. doi: 10.1016/j.bpj.2015.09.013. PubMed DOI PMC
Sun SX, Walcott S, Wolgemuth CW. Cytoskeletal cross-linking and bundling in motor-independent contraction. Curr. Biol. 2010;20:R649–R654. doi: 10.1016/j.cub.2010.07.004. PubMed DOI PMC
Mendes Pinto I, Rubinstein B, Kucharavy A, Unruh JR, Li R. Actin depolymerization drives actomyosin ring contraction during budding yeast cytokinesis. Dev. Cell. 2012;22:1247–1260. doi: 10.1016/j.devcel.2012.04.015. PubMed DOI PMC
Zhang L, Maddox AS. Anillin. Curr. Biol. 2010;20:135–136. doi: 10.1016/j.cub.2009.12.017. PubMed DOI
Field CM, Alberts BM. Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol. 1995;131:165–178. doi: 10.1083/jcb.131.1.165. PubMed DOI PMC
Paolo D’Avino P. How to scaffold the contractile ring for a safe cytokinesis - lessons from Anillin-related proteins. J. Cell Sci. 2009;122:1071–1079. doi: 10.1242/jcs.034785. PubMed DOI
Piekny AJ, Maddox AS. The myriad roles of Anillin during cytokinesis. Semin. Cell Dev. Biol. 2010;21:881–891. doi: 10.1016/j.semcdb.2010.08.002. PubMed DOI
Goldbach P, et al. Stabilization of the actomyosin ring enables spermatocyte cytokinesis in Drosophila. Mol. Biol. Cell. 2010;21:1482–1493. doi: 10.1091/mbc.e09-08-0714. PubMed DOI PMC
Oegema K, Savoian MS, Mitchison TJ, Field CM. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 2000;150:539–551. doi: 10.1083/jcb.150.3.539. PubMed DOI PMC
Straight AN, Field CM, Mitchison TJ. Anillin binds nonmuscle myosin II and regulates the contractile ring. Mol. Biol. Cell. 2005;16:1–13. doi: 10.1091/mbc.e04-08-0758. PubMed DOI PMC
Zhao WM, Fang G. Anillin is a substrate of anaphase-promoting complex/cyclosome (APC/C) that controls spatial contractility of myosin during late cytokinesis. J. Biol. Chem. 2005;280:33516–33524. doi: 10.1074/jbc.M504657200. PubMed DOI
Naydenov NG, Koblinski JE, Ivanov AI. Anillin is an emerging regulator of tumorigenesis, acting as a cortical cytoskeletal scaffold and a nuclear modulator of cancer cell differentiation. Cell. Mol. Life Sci. 2020;78:621–633. doi: 10.1007/s00018-020-03605-9. PubMed DOI PMC
Matsuda K, Sugawa M, Yamagishi M, Kodera N, Yajima J. Visualizing dynamic actin cross-linking processes driven by the actin-binding protein anillin. FEBS Lett. 2020;594:1237–1247. doi: 10.1002/1873-3468.13720. PubMed DOI
Kueh H, Brieher W, Mitchison T. Dynamic stabilization of actin filaments. Proc. Natl Acad. Sci. USA. 2008;105:16531. doi: 10.1073/pnas.0807394105. PubMed DOI PMC
Mavrakis M, et al. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat. Cell Biol. 2014;16:322–334. doi: 10.1038/ncb2921. PubMed DOI
Lau, A. W. C., Prasad, A. & Dogic, Z. Condensation of isolated semi-flexible filaments driven by depletion interactions. Europhys. Lett. 87, 48006 (2009).
Ward A, et al. Solid friction between soft filaments. Nat. Mater. 2015;14:583–588. doi: 10.1038/nmat4222. PubMed DOI PMC
Hilitski F, et al. Measuring cohesion between macromolecular filaments one pair at a time: depletion-induced microtubule bundling. Phys. Rev. Lett. 2015;114:1–6. doi: 10.1103/PhysRevLett.114.138102. PubMed DOI
Sanchez T, Kulic IM, Dogic Z. Circularization, photomechanical switching, and a supercoiling transition of actin filaments. Phys. Rev. Lett. 2010;104:65–68. PubMed
Lansky Z, et al. Diffusible crosslinkers generate directed forces in microtubule networks. Cell. 2015;160:1159–1168. doi: 10.1016/j.cell.2015.01.051. PubMed DOI
Braun M, et al. Changes in microtubule overlap length regulate kinesin-14-driven microtubule sliding. Nat. Chem. Biol. 2017;13:1245–1252. doi: 10.1038/nchembio.2495. PubMed DOI PMC
Odde DJ. Mitosis, Diffusible Crosslinkers, and the ideal gas law. Cell. 2015;160:1041–1043. doi: 10.1016/j.cell.2015.02.048. PubMed DOI
Jananji S, et al. Multimodal and polymorphic interactions between anillin and actin: their implications for cytokinesis. J. Mol. Biol. 2017;429:715–731. doi: 10.1016/j.jmb.2017.01.020. PubMed DOI
Braun M, Diez S, Lansky Z. Cytoskeletal organization through multivalent interactions. J. Cell Sci. 2020;133:jcs234393. doi: 10.1242/jcs.234393. PubMed DOI
Norstrom MF, Smithback PA, Rock RS. Unconventional processive mechanics of non-muscle myosin IIB. J. Biol. Chem. 2010;285:26326–26334. doi: 10.1074/jbc.M110.123851. PubMed DOI PMC
Stachowiak MR, et al. Mechanism of cytokinetic contractile ring constriction in fission yeast. Dev. Cell. 2014;29:547–561. doi: 10.1016/j.devcel.2014.04.021. PubMed DOI PMC
Bormuth V, Varga V, Howard J, Schäffer E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science. 2007;325:870–873. doi: 10.1126/science.1174923. PubMed DOI
Wierenga H, Wolde PR. Ten. diffusible cross-linkers cause superexponential friction forces. Phys. Rev. Lett. 2020;125:78101. doi: 10.1103/PhysRevLett.125.078101. PubMed DOI
Walcott S, Sun SX. Active force generation in cross-linked filament bundles without motor proteins. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2010;82:1–4. doi: 10.1103/PhysRevE.82.050901. PubMed DOI
Walcott S, Sun SX. A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells. Proc. Natl Acad. Sci. USA. 2010;107:7757–7762. doi: 10.1073/pnas.0912739107. PubMed DOI PMC
Gittes F, Mickey B, Nettleton J, Howard J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 1993;120:923–934. doi: 10.1083/jcb.120.4.923. PubMed DOI PMC
Hickson GRX, O’Farrell PH. Anillin: a pivotal organizer of the cytokinetic machinery. Biochem. Soc. Trans. 2008;36:439–441. doi: 10.1042/BST0360439. PubMed DOI PMC
Mishra M, et al. In vitro contraction of cytokinetic ring depends on myosin II but not on actin dynamics. Nat. Cell Biol. 2013;15:853–859. doi: 10.1038/ncb2781. PubMed DOI
Kaji N, et al. Cell cycle-associated changes in slingshot phosphatase activity and roles in cytokinesis in animal cells. J. Biol. Chem. 2003;278:33450–33455. doi: 10.1074/jbc.M305802200. PubMed DOI
Ono K, Parast M, Alberico C, Benian GM, Ono S. Specific requirement for two ADF/cofilin isoforms in distinct actin-dependent processes in Caenorhabditis elegans. J. Cell Sci. 2003;116:2073–2085. doi: 10.1242/jcs.00421. PubMed DOI
Somma MP, Fasulo B, Cenci G, Cundari E, Gatti M. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell. 2002;13:2448–2460. doi: 10.1091/mbc.01-12-0589. PubMed DOI PMC
Akiyoshi B, et al. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature. 2010;468:576–579. doi: 10.1038/nature09594. PubMed DOI PMC
Gestaut DR, et al. Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nat. Cell Biol. 2008;10:407–414. doi: 10.1038/ncb1702. PubMed DOI PMC
Gardner MK, Odde DJ. Dam1 complexes go it alone on disassembling microtubules. Nat. Cell Biol. 2008;10:379–381. doi: 10.1038/ncb0408-379. PubMed DOI
Hill TL. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA. 1985;82:4404–4408. doi: 10.1073/pnas.82.13.4404. PubMed DOI PMC
Lenz M, Thoresen T, Gardel ML, Dinner AR. Contractile units in disordered actomyosin bundles arise from F-actin buckling. Phys. Rev. Lett. 2012;108:1–5. PubMed PMC
Murrell MP, Gardel ML. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA. 2012;109:20820–20825. doi: 10.1073/pnas.1214753109. PubMed DOI PMC
Vavylonis D, Wu JQ, Hao S, O’Shaughnessy B, Pollard TD. Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science. 2008;319:97–100. doi: 10.1126/science.1151086. PubMed DOI
Kruse K, Jülicher F. Actively contracting bundles of polar filaments. Phys. Rev. Lett. 2000;85:1778–1781. doi: 10.1103/PhysRevLett.85.1778. PubMed DOI
Liverpool TB, Marchetti MC. Bridging the microscopic and the hydrodynamic in active filament solutions. Europhys. Lett. 2005;69:846–852. doi: 10.1209/epl/i2004-10414-0. DOI
Braun M, Lansky Z, Hilitski F, Dogic Z, Diez S. Entropic forces drive contraction of cytoskeletal networks. BioEssays. 2016;38:474–481. doi: 10.1002/bies.201500183. PubMed DOI
Arnold TR, et al. Anillin regulates epithelial cell mechanics by structuring the medial-apical actomyosin network. Elife. 2019;8:e39065. doi: 10.7554/eLife.39065. PubMed DOI PMC
Lemaitre RP, Bogdanova A, Borgonovo B, Woodruff JB, Drechsel DN. FlexiBAC: a versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol. 2019;19:1–11. doi: 10.1186/s12896-019-0512-z. PubMed DOI PMC
Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Hebert AS, et al. The one hour yeast proteome. Mol. Cell. Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC
Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Hirokawa N, et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 1989;56:867–878. doi: 10.1016/0092-8674(89)90691-0. PubMed DOI
Ruhnow F, Zwicker D, Diez S. Tracking single particles and elongated filaments with nanometer precision. Biophys. J. 2011;100:2820–2828. doi: 10.1016/j.bpj.2011.04.023. PubMed DOI PMC
Tarantino N, et al. Tnf and il-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J. Cell Biol. 2014;204:231–245. doi: 10.1083/jcb.201307172. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
CKAP5 enables formation of persistent actin bundles templated by dynamically instable microtubules
figshare
10.6084/m9.figshare.14725188