CKAP5 enables formation of persistent actin bundles templated by dynamically instable microtubules
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 MH109651
NIMH NIH HHS - United States
PubMed
38086388
PubMed Central
PMC10841699
DOI
10.1016/j.cub.2023.11.031
PII: S0960-9822(23)01581-6
Knihovny.cz E-zdroje
- Klíčová slova
- CKAP5, XMAP215, actin filaments, cytoskeleton, cytoskeleton-associated proteins, filament crosslinkers, in vitro reconstitution, microtubules, neuronal growth cones,
- MeSH
- aktiny * metabolismus MeSH
- čípky retiny metabolismus MeSH
- cytoskelet metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- mikrotubuly * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- aktiny * MeSH
Cytoskeletal rearrangements and crosstalk between microtubules and actin filaments are vital for living organisms. Recently, an abundantly present microtubule polymerase, CKAP5 (XMAP215 homolog), has been reported to play a role in mediating crosstalk between microtubules and actin filaments in the neuronal growth cones. However, the molecular mechanism of this process is unknown. Here, we demonstrate, in a reconstituted system, that CKAP5 enables the formation of persistent actin bundles templated by dynamically instable microtubules. We explain the templating by the difference in CKAP5 binding to microtubules and actin filaments. Binding to the microtubule lattice with higher affinity, CKAP5 enables the formation of actin bundles exclusively on the microtubule lattice, at CKAP5 concentrations insufficient to support any actin bundling in the absence of microtubules. Strikingly, when the microtubules depolymerize, actin bundles prevail at the positions predetermined by the microtubules. We propose that the local abundance of available CKAP5-binding sites in actin bundles allows the retention of CKAP5, resulting in persisting actin bundles. In line with our observations, we found that reducing CKAP5 levels in vivo results in a decrease in actin-microtubule co-localization in growth cones and specifically decreases actin intensity at microtubule plus ends. This readily suggests a mechanism explaining how exploratory microtubules set the positions of actin bundles, for example, in cytoskeleton-rich neuronal growth cones.
Zobrazit více v PubMed
Lowery LA, and Vactor D. Van (2009). The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol 10, 332–343. PubMed PMC
Dogterom M, and Koenderink GH (2019). Actin – microtubule crosstalk in cell biology. Nat. Rev. Mol. Cell Biol 20, 38–54. PubMed
Mitchison T, and Kirschner M (1984). Dynamic instability of microtubule growth. Nature 312, 237–242. PubMed
Bergen LG, and Borisy GG (1980). Head-to-tail polymerization of microtubules in vitro. Electron microscope analysis of seeded assembly. J. Cell Biol 84, 141–150. PubMed PMC
Hanson J, and Lowy J (1963). The structure of F-actin and of actin filaments isolated from muscle. J. Mol. Biol 6, 46–60.
Depue RH, and Rice RV (1965). F-actin is a right-handed helix. J. Mol. Biol 12, 302–303. PubMed
Wegner A, and Isenberg G (1983). 12-fold difference between the critical monomer concentrations of the two ends of actin filaments in physiological salt conditions. Proc. Natl. Acad. Sci. U. S. A 80, 4922–4925. PubMed PMC
Evangelista M, Blundell K, Longtine MS, Chow CJ, Adames N, Pringle JR, Peter M, and Boone C (1997). Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science (80-.) 276, 118–122. PubMed
Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K, Harrison SC, Howard J, and Hyman AA (2008). XMAP215 Is a Processive Microtubule Polymerase. Cell 132, 79–88. PubMed PMC
Hahn I, Voelzmann A, Parkin J, Fülle JB, Slater PG, Lowery LA, Sanchez-Soriano N, and Prokop A (2021). Tau, XMAP215/Msps and Eb1 co-operate interdependently to regulate microtubule polymerisation and bundle formation in axons. PLOS Genet. 17, e1009647. PubMed PMC
Lowery LA, Stout A, Faris AE, Ding L, Baird MA, Davidson MW, Danuser G, and Van Vactor D (2013). Growth cone-specific functions of XMAP215 in restricting microtubule dynamics and promoting axonal outgrowth. Neural Dev. 8, 22. PubMed PMC
Slater PG, Cammarata GM, Samuelson AG, Magee A, Hu Y, and Lowery LA (2019). XMAP215 promotes microtubule-F-actin interactions to regulate growth cone microtubules during axon guidance. J. Cell Sci 132. PubMed PMC
Widlund PO, Stear JH, Pozniakovsky A, Zanic M, Reber S, Brouhard GJ, Hyman AA, and Howard J (2011). XMAP215 polymerase activity is built by combining multiple tubulin-binding TOG domains and a basic lattice-binding region. Proc. Natl. Acad. Sci. U. S. A 108, 2741–2746. PubMed PMC
Miller MP, Asbury CL, and Biggins S (2016). A TOG protein confers tension sensitivity to kinetochore-microtubule attachments. Cell 165, 1428–1439. PubMed PMC
Al-Bassam J, Van Breugel M, Harrison SC, and Hyman A (2006). Stu2p binds tubulin and undergoes an open-to-closed conformational change. J. Cell Biol 172, 1009–1022. PubMed PMC
Winkelman JD, Suarez C, Hocky GM, Harker AJ, Morganthaler AN, Christensen JR, Voth GA, Bartles JR, and Kovar DR (2016). Fascin- and α-Actinin-Bundled Networks Contain Intrinsic Structural Features that Drive Protein Sorting. Curr. Biol 26, 2697–2706. PubMed PMC
Kučera O, Siahaan V, Janda D, Dijkstra SH, Pilátová E, Zatecka E, Diez S, Braun M, and Lansky Z (2021). Anillin propels myosin-independent constriction of actin rings. Nat. Commun 12, 4595. PubMed PMC
Vasquez RJ, Gard DL, and Cassimeris L (1999). Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil. Cytoskeleton 43, 310–321. PubMed
Alkemade C, Wierenga H, Volkov VA, Preciado López M, Akhmanova A, ten Wolde PR, Dogterom M, and Koenderink GH (2022). Cross-linkers at growing microtubule ends generate forces that drive actin transport. Proc. Natl. Acad. Sci 119, e2112799119. PubMed PMC
López MP, Huber F, Grigoriev I, Steinmetz MO, Akhmanova A, Koenderink GH, and Dogterom M (2014). Actin–microtubule coordination at growing microtubule ends. Nat. Commun 5, 4778. PubMed PMC
Rodgers NC, Lawrence EJ, Sawant AV, Efimova N, Gonzalez-Vasquez G, Hickman TT, Kaverina I, and Zanic M (2023). CLASP2 facilitates dynamic actin filament organization along the microtubule lattice. Mol. Biol. Cell 34, br3. PubMed PMC
Cammarata GM, Bearce EA, and Lowery LA (2016). Cytoskeletal social networking in the growth cone: How +TIPs mediate microtubule-actin cross-linking to drive axon outgrowth and guidance. Cytoskeleton 73, 461–476. PubMed PMC
Juanes MA, Bouguenina H, Eskin JA, Jaiswal R, Badache A, and Goode BL (2017). Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. J. Cell Biol 216, 2859–2875. PubMed PMC
Jaiswal R, Stepanik V, Rankova A, Molinar O, Goode BL, and McCartney BM (2013). Drosophila homologues of adenomatous polyposis coli (APC) and the formin diaphanous collaborate by a conserved mechanism to stimulate actin filament assembly. J. Biol. Chem 288, 13897–13905. PubMed PMC
Watanabe T, Noritake J, Kakeno M, Matsui T, Harada T, Wang S, Itoh N, Sato K, Matsuzawa K, Iwamatsu A, et al. (2009). Phosphorylation of CLASP2 by GSK-3β regulates its interaction with IQGAP1, EB1 and microtubules. J. Cell Sci 122, 2969–2979. PubMed
Rochlin MW, Dailey ME, and Bridgman PC (1999). Polymerizing microtubules activate site-directed F-actin assembly in nerve growth cones. Mol. Biol. Cell 10, 2309–2327. PubMed PMC
Marx A, Godinez WJ, Tsimashchuk V, Bankhead P, Rohr K, and Engel U (2013). Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules. Mol. Biol. Cell 24, 1544–1558. PubMed PMC
Sánchez-Huertas C, Bonhomme M, Falco A, Fagotto-Kaufmann C, van Haren J, Jeanneteau F, Galjart N, Debant A, and Boudeau J (2020). The +TIP Navigator-1 is an actin–microtubule crosslinker that regulates axonal growth cone motility. J. Cell Biol 219, e201905199. PubMed PMC
Nakos K, Alam MNA, Radler MR, Kesisova IA, Yang C, Okletey J, Tomasso MR, Padrick SB, Svitkina TM, and Spiliotis ET (2022). Septins mediate a microtubule–actin crosstalk that enables actin growth on microtubules. Proc. Natl. Acad. Sci 119, e2202803119. PubMed PMC
Zhao B, Meka DP, Scharrenberg R, König T, Schwanke B, Kobler O, Windhorst S, Kreutz MR, Mikhaylova M, and Calderon De Anda F (2017). Microtubules Modulate F-actin Dynamics during Neuronal Polarization. Sci. Rep 7, 9583. PubMed PMC
Lemaitre RP, Bogdanova A, Borgonovo B, Woodruff JB, and Drechsel DN (2019). FlexiBAC: A versatile, open-source baculovirus vector system for protein expression, secretion, and proteolytic processing. BMC Biotechnol. 19, 1–11. PubMed PMC
Sive HL, Grainger RM, and Harland RM (2010). Microinjection of Xenopus Oocytes. Cold Spring Harb. Protoc 5, pdb.ip81. PubMed
Nieuwkoop PD, and Faber J (1994). Normal Table of Xenopus Laevis (Daudin); A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis. In New York: Garland Pub.
Lowery LA, Faris AER, Stout A, and Van Vactor D (2012). Neural explant cultures from Xenopus laevis. J. Vis. Exp, 4232. PubMed PMC
Jégou A, Carlier MF, and Romet-Lemonne G (2013). Formin mDia1 senses and generates mechanical forces on actin filaments. Nat. Commun 4. PubMed
Castoldi M, and Popov AV (2003). Purification of brain tubulin through two cycles of polymerization- depolymerization in a high-molarity buffer. Protein Expr. Purif 32, 83–88. PubMed
Gell C, Friel CT, Borgonovo B, Drechsel DN, Hyman AA, and Howard J (2011). Purification of tubulin from porcine brain. Methods Mol. Biol 777, 15–28. PubMed
Challacombe JF, Snow DM, and Letourneau PC (1997). Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue. J. Neurosci 17, 3085–3095. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. (2012). Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. PubMed PMC
Higaki T, Akita K, and Katoh K (2020). Coefficient of variation as an image-intensity metric for cytoskeleton bundling. Sci. Reports 2020 101 10, 1–13. PubMed PMC