MICAL proteins play a crucial role in cellular dynamics by binding and disassembling actin filaments, impacting processes like axon guidance, cytokinesis, and cell morphology. Their cellular activity is tightly controlled, as dysregulation can lead to detrimental effects on cellular morphology. Although previous studies have suggested that MICALs are autoinhibited, and require Rab proteins to become active, the detailed molecular mechanisms remained unclear. Here, we report the cryo-EM structure of human MICAL1 at a nominal resolution of 3.1 Å. Structural analyses, alongside biochemical and functional studies, show that MICAL1 autoinhibition is mediated by an intramolecular interaction between its N-terminal catalytic and C-terminal coiled-coil domains, blocking F-actin interaction. Moreover, we demonstrate that allosteric changes in the coiled-coil domain and the binding of the tripartite assembly of CH-L2α1-LIM domains to the coiled-coil domain are crucial for MICAL activation and autoinhibition. These mechanisms appear to be evolutionarily conserved, suggesting a potential universality across the MICAL family.
- MeSH
- aktiny metabolismus chemie MeSH
- alosterická regulace MeSH
- calponiny MeSH
- elektronová kryomikroskopie * MeSH
- lidé MeSH
- mikrofilamenta metabolismus ultrastruktura MeSH
- mikrofilamentové proteiny metabolismus chemie ultrastruktura MeSH
- molekulární modely MeSH
- oxygenasy se smíšenou funkcí MeSH
- proteinové domény MeSH
- proteiny s doménou LIM metabolismus chemie genetika MeSH
- vazba proteinů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Interaction between an antigen-presenting cell and a T cell, and their subsequent conjugation are a prerequisite for the formation of the immunological synapse and productive, antigen-dependent activation of T cells. This initial interaction is accompanied by recognition of the presented antigen by the T cell receptor, and by changes in the morphology of the interacting cells and in actin cytoskeleton structure in the site of interaction. The experimental protocol below describes a simple assay for quantitative assessment of antigen-presenting cells-T cell conjugation using confocal microscopy or flow cytometry.
BACKGROUND: FLNC is one of the few genes associated with all types of cardiomyopathies, but it also underlies neuromuscular phenotype. The combination of concomitant neuromuscular and cardiac involvement is not often observed in filaminopathies and the impact of this on the disease prognosis has hitherto not been analyzed. RESULTS: Here we provide a detailed clinical, genetic, and structural prediction analysis of distinct FLNC-associated phenotypes based on twelve pediatric cases. They include early-onset restrictive cardiomyopathy (RCM) in association with congenital myopathy. In all patients the initial diagnosis was established during the first year of life and in five out of twelve (41.7%) patients the first symptoms were observed at birth. RCM was present in all patients, often in combination with septal defects. No ventricular arrhythmias were noted in any of the patients presented here. Myopathy was confirmed by neurological examination, electromyography, and morphological studies. Arthrogryposes was diagnosed in six patients and remained clinically meaningful with increasing age in three of them. One patient underwent successful heart transplantation at the age of 18 years and two patients are currently included in the waiting list for heart transplantation. Two died due to congestive heart failure. One patient had ICD instally as primary prevention of SCD. In ten out of twelve patients the disease was associated with missense variants and only in two cases loss of function variants were detected. In half of the described cases, an amino acid substitution A1186V, altering the structure of IgFLNc10, was found. CONCLUSIONS: The present description of twelve cases of early-onset restrictive cardiomyopathy with congenital myopathy and FLNC mutation, underlines a distinct unique phenotype that can be suggested as a separate clinical form of filaminopathies. Amino acid substitution A1186V, which was observed in half of the cases, defines a mutational hotspot for the reported combination of myopathy and cardiomyopathy. Several independent molecular mechanisms of FLNC mutations linked to filamin structure and function can explain the broad spectrum of FLNC-associated phenotypes. Early disease presentation and unfavorable prognosis of heart failure demanding heart transplantation make awareness of this clinical form of filaminopathy of great clinical importance.
- MeSH
- fenotyp MeSH
- filaminy chemie genetika metabolismus MeSH
- kardiomyopatie * genetika metabolismus MeSH
- lidé MeSH
- nemoci svalů * MeSH
- restriktivní kardiomyopatie * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Septins, a family of GTP-binding proteins that assemble into higher order structures, interface with the membrane, actin filaments and microtubules, and are thus important regulators of cytoarchitecture. Septin 9 (SEPT9), which is frequently overexpressed in tumors and mutated in hereditary neuralgic amyotrophy (HNA), mediates the binding of septins to microtubules, but the molecular determinants of this interaction remained uncertain. We demonstrate that a short microtubule-associated protein (MAP)-like motif unique to SEPT9 isoform 1 (SEPT9_i1) drives septin octamer-microtubule interaction in cells and in vitro reconstitutions. Septin-microtubule association requires polymerizable septin octamers harboring SEPT9_i1. Although outside of the MAP-like motif, HNA mutations abrogate this association, identifying a putative regulatory domain. Removal of this domain from SEPT9_i1 sequesters septins on microtubules, promotes microtubule stability and alters actomyosin fiber distribution and tension. Thus, we identify key molecular determinants and potential regulatory roles of septin-microtubule interaction, paving the way to deciphering the mechanisms underlying septin-associated pathologies. This article has an associated First Person interview with the first author of the paper.
Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.
- MeSH
- aktiny metabolismus MeSH
- aktomyosin metabolismus MeSH
- buněčné dělení MeSH
- cytokineze MeSH
- Drosophila melanogaster metabolismus MeSH
- kontraktilní proteiny genetika metabolismus MeSH
- lidé MeSH
- mikrofilamenta metabolismus MeSH
- mikrofilamentové proteiny MeSH
- myosiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation.
The last two decades have witnessed a tremendous increase in cell biology data. Not least is this true for studies of the dynamic organization of the microfilament and microtubule systems in animal cells where analyses of the molecular components and their interaction patterns have deepened our understanding of these complex force-generating machineries. Previous observations of a molecular cross-talk between the two systems have now led to the realization of the existence of several intricate mechanisms operating to maintain their coordinated cellular organization. In this short review, we relate to this development by discussing new results concerning the function of the actin regulator profilin 1 as a control component of microfilament-microtubule cross-talk.
- MeSH
- aktiny genetika metabolismus MeSH
- lidé MeSH
- mikrofilamenta genetika metabolismus MeSH
- mikrotubuly genetika metabolismus MeSH
- profiliny genetika metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Primary cilia are microtubule-based organelles that are important for signaling and sensing in eukaryotic cells. Unlike the thoroughly studied motile cilia, the three-dimensional architecture and molecular composition of primary cilia are largely unexplored. Yet, studying these aspects is necessary to understand how primary cilia function in health and disease. We developed an enabling method for investigating the structure of primary cilia isolated from MDCK-II cells at molecular resolution by cryo-electron tomography. We show that the textbook '9 + 0' arrangement of microtubule doublets is only present at the primary cilium base. A few microns out, the architecture changes into an unstructured bundle of EB1-decorated microtubules and actin filaments, putting an end to a long debate on the presence or absence of actin filaments in primary cilia. Our work provides a plethora of insights into the molecular structure of primary cilia and offers a methodological framework to study these important organelles.
- MeSH
- buněčné kultury MeSH
- buňky MDCK MeSH
- Chlamydomonas metabolismus ultrastruktura MeSH
- cilie metabolismus ultrastruktura MeSH
- elektronová kryomikroskopie MeSH
- exprese genu MeSH
- lidé MeSH
- mikrofilamenta metabolismus ultrastruktura MeSH
- mikrotubuly metabolismus ultrastruktura MeSH
- proteiny asociované s mikrotubuly genetika metabolismus MeSH
- psi MeSH
- tomografie elektronová MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cytoskeleton plays a key role in cellular proliferation, cell-shape maintenance and internal cellular organization. Cells are highly sensitive to changes in microgravity, which can induce alterations in the distribution of the cytoskeletal and cell proliferation. This study aimed to assess the effects of simulated microgravity (SMG) on the proliferation and expression of major cell cycle-related regulators and cytoskeletal proteins in human umbilical cord mesenchymal stem cells (hucMSCs). A WST-1 assay showed that the proliferation of SMG-exposed hucMSCs was lower than a control group. Furthermore, flow cytometry analysis demonstrated that the percentage of SMG-exposed hucMSCs in the G0/G1 phase was higher than the control group. A western blot analysis revealed there was a downregulation of cyclin A1 and A2 expression in SMG-exposed hucMSCs as well. The expression of cyclin-dependent kinase 4 (cdk4) and 6 (cdk6) were also observed to be reduced in the SMG-exposed hucMSCs. The total nuclear intensity of SMG-exposed hucMSCs was also lower than the control group. However, there were no differences in the nuclear area or nuclear-shape value of hucMSCs from the SMG and control groups. A western blot and quantitative RT-PCR analysis showed that SMG-exposed hucMSCs experienced a downregulation of bata-actin and alpha-tubulin compared to the control group. SMG generated the reorganization of microtubules and microfilaments in hucMSCs. Our study supports the idea that the downregulation of major cell cycle-related proteins and cytoskeletal proteins results in the remodeling of the cytoskeleton and the proliferation of hucMSCs.
- MeSH
- buněčná diferenciace fyziologie MeSH
- buněčný cyklus fyziologie MeSH
- cytoskelet metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- mikrotubuly metabolismus MeSH
- proliferace buněk fyziologie MeSH
- pupečník cytologie metabolismus MeSH
- simulace stavu beztíže * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
At the subcellular level, the cytoskeleton regulates cell structure, organelle movement, and cytoplasmic streaming. Autophagy is a process to remove unwanted biomaterials or damaged organelles through double membrane compartments known as autophagosomes. Autophagosome biogenesis requires vesicle trafficking between donor and acceptor compartments, membrane expansion, and fusion, which is very likely to be regulated by the cytoskeleton. Recent studies have demonstrated that by knocking out key actin-regulating proteins, autophagosome biogenesis is inhibited. However, the formation of ATG8 positive structures are not affected when the entire actin network is disrupted. Here, we discuss this paradox and propose the function of the actin cytoskeleton in plant autophagy.