Cytoskeletal organization through multivalent interactions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32540925
DOI
10.1242/jcs.234393
PII: 133/12/jcs234393
Knihovny.cz E-zdroje
- Klíčová slova
- Concentration-dependent off-rates, Cytoskeletal self-organization, Microtubule-associated protein, Multivalency, Protein avidity,
- MeSH
- cytoskelet * MeSH
- mikrotubuly * MeSH
- molekulární motory MeSH
- pohyb buněk MeSH
- proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- molekulární motory MeSH
- proteiny MeSH
The cytoskeleton consists of polymeric protein filaments with periodic lattices displaying identical binding sites, which establish a multivalent platform for the binding of a plethora of filament-associated ligand proteins. Multivalent ligand proteins can tether themselves to the filaments through one of their binding sites, resulting in an enhanced reaction kinetics for the remaining binding sites. In this Opinion, we discuss a number of cytoskeletal phenomena underpinned by such multivalent interactions, namely (1) generation of entropic forces by filament crosslinkers, (2) processivity of molecular motors, (3) spatial sorting of proteins, and (4) concentration-dependent unbinding of filament-associated proteins. These examples highlight that cytoskeletal filaments constitute the basis for the formation of microenvironments, which cytoskeletal ligand proteins can associate with and, once engaged, can act within at altered reaction kinetics. We thus argue that multivalency is one of the properties crucial for the functionality of the cytoskeleton.
B CUBE Center for Molecular Bioengineering Technische Universität Dresden Dresden 01307 Germany
Cluster of Excellence Physics of Life Technische Universität Dresden Dresden 01307 Germany
Max Planck Institute of Molecular Cell Biology and Genetics Dresden 01307 Germany
Citace poskytuje Crossref.org
Enhanced diffusion through multivalency
Anillin propels myosin-independent constriction of actin rings