Enhanced diffusion through multivalency
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39628400
PubMed Central
PMC11615653
DOI
10.1039/d4sm00778f
Knihovny.cz E-zdroje
- MeSH
- difuze MeSH
- ligandy MeSH
- nanočástice * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ligandy MeSH
The diffusion of macromolecules, nanoparticles, viruses, and bacteria is essential for targeting hosts or cellular destinations. While these entities can bind to receptors and ligands on host surfaces, the impact of multiple binding sites-referred to as multivalency-on diffusion along strands or surfaces is poorly understood. Through numerical simulations, we have discovered a significant acceleration in diffusion for particles with increasing valency, while maintaining the same overall affinity to the host surface. This acceleration arises from the redistribution of the binding affinity of the particle across multiple binding ligands. As a result, particles that are immobilized when monovalent can achieve near-unrestricted diffusion upon becoming multivalent. Additionally, we demonstrate that the diffusion of multivalent particles with a rigid ligand distribution can be modulated by patterned host receptors. These findings provide insights into the complex diffusion mechanisms of multivalent particles and biological entities, and offer new strategies for designing advanced nanoparticle systems with tailored diffusion properties, thereby enhancing their effectiveness in applications such as drug delivery and diagnostics.
CEITEC Central European Institute of Technology Kamenice 753 5 625 00 Brno Czech Republic
Division of Computational Chemistry Lund University Sweden
LINXS Institute of Advanced Neutron and 10 ray Science Lund University Sweden
Zobrazit více v PubMed
Lee R. T. Ichikawa Y. Kawasaki T. Drickamer K. Lee Y. C. Arch. Biochem. Biophys. 1992;299:129–136. doi: 10.1016/0003-9861(92)90254-T. PubMed DOI
Mondal S. Narayan K. Botterbusch S. Powers I. Zheng J. James H. P. Jin R. Baumgart T. Nat. Commun. 2022;13:5017. doi: 10.1038/s41467-022-32529-0. PubMed DOI PMC
Banjade S. Rosen M. K. eLife. 2014;3:e04123. doi: 10.7554/eLife.04123. PubMed DOI PMC
Cuesta A. M. Sainz-Pastor N. Bonet J. Oliva B. Alvarez-Vallina L. Trends Biotechnol. 2010;28:355–362. doi: 10.1016/j.tibtech.2010.03.007. PubMed DOI
Dam T. K. Roy R. Das S. K. Oscarson S. Brewer C. J. Biol. Chem. 2000;275:14223–14230. doi: 10.1074/jbc.275.19.14223. PubMed DOI
Lu W. Pieters R. J. Expert Opin. Drug Discovery. 2019;14:387–395. doi: 10.1080/17460441.2019.1573813. PubMed DOI
Müller C. Despras G. Lindhorst T. K. Chem. Soc. Rev. 2016;45:3275–3302. doi: 10.1039/C6CS00165C. PubMed DOI
Overeem N. J. Vries E. Huskens J. Small. 2021;17:2007214. doi: 10.1002/smll.202007214. PubMed DOI
Delguste M. Zeippen C. Machiels B. Mast J. Gillet L. Alsteens D. Sci. Adv. 2018;4:eaat1273. doi: 10.1126/sciadv.aat1273. PubMed DOI PMC
Paran N. EMBO J. 2001;20:4443–4453. doi: 10.1093/emboj/20.16.4443. PubMed DOI PMC
Martinez-Veracoechea F. J. Mognetti B. M. Angioletti-Uberti S. Varilly P. Frenkel D. Dobnikar J. Soft Matter. 2014;10:3463–3470. doi: 10.1039/C3SM53096E. PubMed DOI
Van Dongen M. A. Dougherty C. A. Banaszak Holl M. M. Biomacromolecules. 2014;15:3215–3234. doi: 10.1021/bm500921q. PubMed DOI PMC
Woythe L. Tito N. B. Albertazzi L. Adv. Drug Delivery Rev. 2021;169:1–21. doi: 10.1016/j.addr.2020.11.010. PubMed DOI
Zhang Y. Yu Y. Jiang Z. Xu H. Wang Z. Zhang X. Oda M. Ishizuka T. Jiang D. Chi L. Fuchs H. Langmuir. 2009;25:6627–6632. doi: 10.1021/la901360c. PubMed DOI
Martinez-Veracoechea F. J. Frenkel D. Proc. Natl. Acad. Sci. U. S. A. 2011;108:10963–10968. doi: 10.1073/pnas.1105351108. PubMed DOI PMC
Leckband D. Sivasankar S. Curr. Opin. Cell Biol. 2000;12:587–592. doi: 10.1016/S0955-0674(00)00136-8. PubMed DOI
Sauer M. M. Jakob R. P. Luber T. Canonica F. Navarra G. Ernst B. Unverzagt C. Maier T. Glockshuber R. J. Am. Chem. Soc. 2019;141:936–944. doi: 10.1021/jacs.8b10736. PubMed DOI
Groves J. T. Angew. Chem., Int. Ed. 2005;44:3524–3538. doi: 10.1002/anie.200461014. PubMed DOI
Heldin C.-H. Cell. 1995;80:213–223. doi: 10.1016/0092-8674(95)90404-2. PubMed DOI
Cochran J. R. Aivazian D. Cameron T. O. Stern L. J. Trends Biochem. Sci. 2001;26:304–310. doi: 10.1016/S0968-0004(01)01815-1. PubMed DOI
Puffer E. B. Pontrello J. K. Hollenbeck J. J. Kink J. A. Kiessling L. L. ACS Chem. Biol. 2007;2:252–262. doi: 10.1021/cb600489g. PubMed DOI
Krogfelt K. A. Bergmans H. Klemm P. Infect. Immun. 1990;58:1995–1998. doi: 10.1128/iai.58.6.1995-1998.1990. PubMed DOI PMC
Jones C. H. Pinkner J. S. Roth R. Heuser J. Nicholes A. V. Abraham S. N. Hultgren S. J. Proc. Natl. Acad. Sci. U. S. A. 1995;92:2081–2085. doi: 10.1073/pnas.92.6.2081. PubMed DOI PMC
Liang M. N. Smith S. P. Metallo S. J. Choi I. S. Prentiss M. Whitesides G. M. Proc. Natl. Acad. Sci. U. S. A. 2000;97:13092–13096. doi: 10.1073/pnas.230451697. PubMed DOI PMC
Connolly S. A. Jackson J. O. Jardetzky T. S. Longnecker R. Nat. Rev. Microbiol. 2011;9:369–381. doi: 10.1038/nrmicro2548. PubMed DOI PMC
Agarwal S., Veytsman B., Fletcher D. A. and Huber G., The kinetics and optimality of influenza A virus locomotion, 2024, https://biorxiv.org/lookup/doi/10.1101/2024.05.06.592729
Metropolis N. Rosenbluth A. W. Rosenbluth M. N. Teller A. H. Teller E. J. Chem. Phys. 1953;21:1087–1092. doi: 10.1063/1.1699114. DOI
Lee-Thorp J. P. Holmes-Cerfon M. Soft Matter. 2018;14:8147–8159. doi: 10.1039/C8SM01430B. PubMed DOI
Merminod S. Edison J. R. Fang H. Hagan M. F. Rogers W. B. Nanoscale. 2021;13:12602–12612. doi: 10.1039/D1NR02083H. PubMed DOI PMC
Evans E. Sackmann E. J. Fluid Mech. 1988;194:553. doi: 10.1017/S0022112088003106. DOI
Perl A. Gomez-Casado A. Thompson D. Dam H. H. Jonkheijm P. Reinhoudt D. N. Huskens J. Nat. Chem. 2011;3:317–322. doi: 10.1038/nchem.1005. PubMed DOI
Blainey P. C. Van Oijen A. M. Banerjee A. Verdine G. L. Xie X. S. Proc. Natl. Acad. Sci. U. S. A. 2006;103:5752–5757. doi: 10.1073/pnas.0509723103. PubMed DOI PMC
Kowalewski A. Forde N. R. Korosec C. S. J. Phys. Chem. B. 2021;125:6857–6863. doi: 10.1021/acs.jpcb.1c02821. PubMed DOI
Block S. Zhdanov V. P. Höök F. Nano Lett. 2016;16:4382–4390. doi: 10.1021/acs.nanolett.6b01511. PubMed DOI
Knight J. D. Lerner M. G. Marcano-Velázquez J. G. Pastor R. W. Falke J. Biophys. J. 2010;99:2879–2887. doi: 10.1016/j.bpj.2010.08.046. PubMed DOI PMC
Marbach S. Zheng J. A. Holmes-Cerfon M. Soft Matter. 2022;18:3130–3146. doi: 10.1039/D1SM01544C. PubMed DOI
Jana P. K. Mognetti B. M. Phys. Rev. E. 2019;100:060601. doi: 10.1103/PhysRevE.100.060601. PubMed DOI
Lowensohn J. Stevens L. Goldstein D. Mognetti B. M. J. Chem. Phys. 2022;156:164902. doi: 10.1063/5.0084848. PubMed DOI
Braun M. Diez S. Lansky Z. J. Cell Sci. 2020;133:jcs234393. doi: 10.1242/jcs.234393. PubMed DOI
Park S. Lee O.-C. Durang X. Jeon J.-H. J. Korean Phys. Soc. 2021;78:408–426. doi: 10.1007/s40042-021-00060-y. DOI
Givaty O. Levy Y. J. Mol. Biol. 2009;385:1087–1097. doi: 10.1016/j.jmb.2008.11.016. PubMed DOI
Halford S. E. Nucleic Acids Res. 2004;32:3040–3052. doi: 10.1093/nar/gkh624. PubMed DOI PMC