Enhanced diffusion through multivalency

. 2025 Jan 02 ; 21 (2) : 179-185. [epub] 20250102

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39628400

The diffusion of macromolecules, nanoparticles, viruses, and bacteria is essential for targeting hosts or cellular destinations. While these entities can bind to receptors and ligands on host surfaces, the impact of multiple binding sites-referred to as multivalency-on diffusion along strands or surfaces is poorly understood. Through numerical simulations, we have discovered a significant acceleration in diffusion for particles with increasing valency, while maintaining the same overall affinity to the host surface. This acceleration arises from the redistribution of the binding affinity of the particle across multiple binding ligands. As a result, particles that are immobilized when monovalent can achieve near-unrestricted diffusion upon becoming multivalent. Additionally, we demonstrate that the diffusion of multivalent particles with a rigid ligand distribution can be modulated by patterned host receptors. These findings provide insights into the complex diffusion mechanisms of multivalent particles and biological entities, and offer new strategies for designing advanced nanoparticle systems with tailored diffusion properties, thereby enhancing their effectiveness in applications such as drug delivery and diagnostics.

Zobrazit více v PubMed

Lee R. T. Ichikawa Y. Kawasaki T. Drickamer K. Lee Y. C. Arch. Biochem. Biophys. 1992;299:129–136. doi: 10.1016/0003-9861(92)90254-T. PubMed DOI

Mondal S. Narayan K. Botterbusch S. Powers I. Zheng J. James H. P. Jin R. Baumgart T. Nat. Commun. 2022;13:5017. doi: 10.1038/s41467-022-32529-0. PubMed DOI PMC

Banjade S. Rosen M. K. eLife. 2014;3:e04123. doi: 10.7554/eLife.04123. PubMed DOI PMC

Cuesta A. M. Sainz-Pastor N. Bonet J. Oliva B. Alvarez-Vallina L. Trends Biotechnol. 2010;28:355–362. doi: 10.1016/j.tibtech.2010.03.007. PubMed DOI

Dam T. K. Roy R. Das S. K. Oscarson S. Brewer C. J. Biol. Chem. 2000;275:14223–14230. doi: 10.1074/jbc.275.19.14223. PubMed DOI

Lu W. Pieters R. J. Expert Opin. Drug Discovery. 2019;14:387–395. doi: 10.1080/17460441.2019.1573813. PubMed DOI

Müller C. Despras G. Lindhorst T. K. Chem. Soc. Rev. 2016;45:3275–3302. doi: 10.1039/C6CS00165C. PubMed DOI

Overeem N. J. Vries E. Huskens J. Small. 2021;17:2007214. doi: 10.1002/smll.202007214. PubMed DOI

Delguste M. Zeippen C. Machiels B. Mast J. Gillet L. Alsteens D. Sci. Adv. 2018;4:eaat1273. doi: 10.1126/sciadv.aat1273. PubMed DOI PMC

Paran N. EMBO J. 2001;20:4443–4453. doi: 10.1093/emboj/20.16.4443. PubMed DOI PMC

Martinez-Veracoechea F. J. Mognetti B. M. Angioletti-Uberti S. Varilly P. Frenkel D. Dobnikar J. Soft Matter. 2014;10:3463–3470. doi: 10.1039/C3SM53096E. PubMed DOI

Van Dongen M. A. Dougherty C. A. Banaszak Holl M. M. Biomacromolecules. 2014;15:3215–3234. doi: 10.1021/bm500921q. PubMed DOI PMC

Woythe L. Tito N. B. Albertazzi L. Adv. Drug Delivery Rev. 2021;169:1–21. doi: 10.1016/j.addr.2020.11.010. PubMed DOI

Zhang Y. Yu Y. Jiang Z. Xu H. Wang Z. Zhang X. Oda M. Ishizuka T. Jiang D. Chi L. Fuchs H. Langmuir. 2009;25:6627–6632. doi: 10.1021/la901360c. PubMed DOI

Martinez-Veracoechea F. J. Frenkel D. Proc. Natl. Acad. Sci. U. S. A. 2011;108:10963–10968. doi: 10.1073/pnas.1105351108. PubMed DOI PMC

Leckband D. Sivasankar S. Curr. Opin. Cell Biol. 2000;12:587–592. doi: 10.1016/S0955-0674(00)00136-8. PubMed DOI

Sauer M. M. Jakob R. P. Luber T. Canonica F. Navarra G. Ernst B. Unverzagt C. Maier T. Glockshuber R. J. Am. Chem. Soc. 2019;141:936–944. doi: 10.1021/jacs.8b10736. PubMed DOI

Groves J. T. Angew. Chem., Int. Ed. 2005;44:3524–3538. doi: 10.1002/anie.200461014. PubMed DOI

Heldin C.-H. Cell. 1995;80:213–223. doi: 10.1016/0092-8674(95)90404-2. PubMed DOI

Cochran J. R. Aivazian D. Cameron T. O. Stern L. J. Trends Biochem. Sci. 2001;26:304–310. doi: 10.1016/S0968-0004(01)01815-1. PubMed DOI

Puffer E. B. Pontrello J. K. Hollenbeck J. J. Kink J. A. Kiessling L. L. ACS Chem. Biol. 2007;2:252–262. doi: 10.1021/cb600489g. PubMed DOI

Krogfelt K. A. Bergmans H. Klemm P. Infect. Immun. 1990;58:1995–1998. doi: 10.1128/iai.58.6.1995-1998.1990. PubMed DOI PMC

Jones C. H. Pinkner J. S. Roth R. Heuser J. Nicholes A. V. Abraham S. N. Hultgren S. J. Proc. Natl. Acad. Sci. U. S. A. 1995;92:2081–2085. doi: 10.1073/pnas.92.6.2081. PubMed DOI PMC

Liang M. N. Smith S. P. Metallo S. J. Choi I. S. Prentiss M. Whitesides G. M. Proc. Natl. Acad. Sci. U. S. A. 2000;97:13092–13096. doi: 10.1073/pnas.230451697. PubMed DOI PMC

Connolly S. A. Jackson J. O. Jardetzky T. S. Longnecker R. Nat. Rev. Microbiol. 2011;9:369–381. doi: 10.1038/nrmicro2548. PubMed DOI PMC

Agarwal S., Veytsman B., Fletcher D. A. and Huber G., The kinetics and optimality of influenza A virus locomotion, 2024, https://biorxiv.org/lookup/doi/10.1101/2024.05.06.592729

Metropolis N. Rosenbluth A. W. Rosenbluth M. N. Teller A. H. Teller E. J. Chem. Phys. 1953;21:1087–1092. doi: 10.1063/1.1699114. DOI

Lee-Thorp J. P. Holmes-Cerfon M. Soft Matter. 2018;14:8147–8159. doi: 10.1039/C8SM01430B. PubMed DOI

Merminod S. Edison J. R. Fang H. Hagan M. F. Rogers W. B. Nanoscale. 2021;13:12602–12612. doi: 10.1039/D1NR02083H. PubMed DOI PMC

Evans E. Sackmann E. J. Fluid Mech. 1988;194:553. doi: 10.1017/S0022112088003106. DOI

Perl A. Gomez-Casado A. Thompson D. Dam H. H. Jonkheijm P. Reinhoudt D. N. Huskens J. Nat. Chem. 2011;3:317–322. doi: 10.1038/nchem.1005. PubMed DOI

Blainey P. C. Van Oijen A. M. Banerjee A. Verdine G. L. Xie X. S. Proc. Natl. Acad. Sci. U. S. A. 2006;103:5752–5757. doi: 10.1073/pnas.0509723103. PubMed DOI PMC

Kowalewski A. Forde N. R. Korosec C. S. J. Phys. Chem. B. 2021;125:6857–6863. doi: 10.1021/acs.jpcb.1c02821. PubMed DOI

Block S. Zhdanov V. P. Höök F. Nano Lett. 2016;16:4382–4390. doi: 10.1021/acs.nanolett.6b01511. PubMed DOI

Knight J. D. Lerner M. G. Marcano-Velázquez J. G. Pastor R. W. Falke J. Biophys. J. 2010;99:2879–2887. doi: 10.1016/j.bpj.2010.08.046. PubMed DOI PMC

Marbach S. Zheng J. A. Holmes-Cerfon M. Soft Matter. 2022;18:3130–3146. doi: 10.1039/D1SM01544C. PubMed DOI

Jana P. K. Mognetti B. M. Phys. Rev. E. 2019;100:060601. doi: 10.1103/PhysRevE.100.060601. PubMed DOI

Lowensohn J. Stevens L. Goldstein D. Mognetti B. M. J. Chem. Phys. 2022;156:164902. doi: 10.1063/5.0084848. PubMed DOI

Braun M. Diez S. Lansky Z. J. Cell Sci. 2020;133:jcs234393. doi: 10.1242/jcs.234393. PubMed DOI

Park S. Lee O.-C. Durang X. Jeon J.-H. J. Korean Phys. Soc. 2021;78:408–426. doi: 10.1007/s40042-021-00060-y. DOI

Givaty O. Levy Y. J. Mol. Biol. 2009;385:1087–1097. doi: 10.1016/j.jmb.2008.11.016. PubMed DOI

Halford S. E. Nucleic Acids Res. 2004;32:3040–3052. doi: 10.1093/nar/gkh624. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...