Entropic forces drive contraction of cytoskeletal networks
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
242933
European Research Council - International
PubMed
26996935
DOI
10.1002/bies.201500183
Knihovny.cz E-zdroje
- Klíčová slova
- cytoskeleton, depletion forces, entropic forces, entropy, filament crosslinkers, force generation, molecular motors,
- MeSH
- biomechanika MeSH
- buněčné dělení MeSH
- cytoskelet metabolismus ultrastruktura MeSH
- entropie MeSH
- eukaryotické buňky metabolismus ultrastruktura MeSH
- lidé MeSH
- mikrotubuly metabolismus ultrastruktura MeSH
- molekulární motory metabolismus MeSH
- pohyb buněk MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae metabolismus ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Ase1 protein, S cerevisiae MeSH Prohlížeč
- molekulární motory MeSH
- proteiny asociované s mikrotubuly MeSH
- Saccharomyces cerevisiae - proteiny MeSH
The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells.
B CUBE Center for Molecular Bioengineering Technische Universität Dresden Dresden Germany
Institute of Biotechnology CAS BIOCEV Center Vestec Czech Republic
Martin Fisher School of Physics Brandeis University Waltham MA USA
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
Citace poskytuje Crossref.org