Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale

. 2021 May 19 ; 12 (1) : 2921. [epub] 20210519

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34012021
Odkazy

PubMed 34012021
PubMed Central PMC8134576
DOI 10.1038/s41467-021-23252-3
PII: 10.1038/s41467-021-23252-3
Knihovny.cz E-zdroje

Spatial light modulators have become an essential tool for advanced microscopy, enabling breakthroughs in 3D, phase, and super-resolution imaging. However, continuous spatial-light modulation that is capable of capturing sub-millisecond microscopic motion without diffraction artifacts and polarization dependence is challenging. Here we present a photothermal spatial light modulator (PT-SLM) enabling fast phase imaging for nanoscopic 3D reconstruction. The PT-SLM can generate a step-like wavefront change, free of diffraction artifacts, with a high transmittance and a modulation efficiency independent of light polarization. We achieve a phase-shift > π and a response time as short as 70 µs with a theoretical limit in the sub microsecond range. We used the PT-SLM to perform quantitative phase imaging of sub-diffractional species to decipher the 3D nanoscopic displacement of microtubules and study the trajectory of a diffusive microtubule-associated protein, providing insights into the mechanism of protein navigation through a complex microtubule network.

Zobrazit více v PubMed

Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica. 1942;9:974–986. doi: 10.1016/S0031-8914(42)80079-8. DOI

Ellis GW. Holomicrography: transformation of image during reconstruction of a posteriori. Science. 1966;154:1195–1197. doi: 10.1126/science.154.3753.1195. PubMed DOI

Nomarski G. Nouveau dispositif pour lobservation en contraste de phase differentiel. J. Phys. Radium. 1955;16:S88–S88.

Curtis AS. The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 1964;20:199–215. doi: 10.1083/jcb.20.2.199. PubMed DOI PMC

Wolf, E. Progress in optics. Vol. 57 (Elsevier, 2012).

Park YK, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics. 2018;12:578–589. doi: 10.1038/s41566-018-0253-x. DOI

Kandel ME, et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-12634-3. PubMed DOI PMC

Bon P, et al. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy. Nat. Commun. 2015;6:1–8. doi: 10.1038/ncomms8764. PubMed DOI PMC

Kandel ME, Teng KW, Selvin PR, Popescu G. Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano. 2017;11:647–655. doi: 10.1021/acsnano.6b06945. PubMed DOI

Yang Y, Zhai C, Zeng Q, Khan AL, Yu H. Quantitative amplitude and phase imaging with interferometric plasmonic microscopy. ACS Nano. 2019;13:13595–13601. doi: 10.1021/acsnano.9b08259. PubMed DOI

Bouchal P, et al. High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. 2019;19:1242–1250. doi: 10.1021/acs.nanolett.8b04776. PubMed DOI

Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 2004;93:037401. doi: 10.1103/PhysRevLett.93.037401. PubMed DOI

Piliarik M, Sandoghdar V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 2014;5:4495. doi: 10.1038/ncomms5495. PubMed DOI

Holanová K, Vala M, Piliarik M. Optical imaging and localization of prospective scattering labels smaller than a single protein. Opt. Laser Technol. 2019;109:323–327. doi: 10.1016/j.optlastec.2018.08.014. DOI

Taylor RW, et al. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics. 2019;13:480–487. doi: 10.1038/s41566-019-0414-6. DOI

Gad-el-Hak, M. MEMS: Introduction and Fundamentals, (CRC press, 2005).

Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 2011;5:81–101. doi: 10.1002/lpor.200900047. DOI

Rubinsztein-Dunlop H, et al. Roadmap on structured light. J. Opt. 2017;19:013001. doi: 10.1088/2040-8978/19/1/013001. DOI

Pavani SRP, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA. 2009;106:2995–2999. doi: 10.1073/pnas.0900245106. PubMed DOI PMC

Tzang O, et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat. Photonics. 2019;13:788–793. doi: 10.1038/s41566-019-0503-6. DOI

Gould TJ, Burke D, Bewersdorf J, Booth MJ. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express. 2012;20:20998. doi: 10.1364/OE.20.020998. PubMed DOI PMC

Nikolajsen T, Leosson K, Bozhevolnyi SI. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 2004;85:5833–5835. doi: 10.1063/1.1835997. DOI

Mattiussi GA, Gagnon G, Lahoud N, Berini P. Thermally activated variable attenuation of long-range surface plasmon-polariton waves. J. Light. Technol. 2006;24:4391–4402. doi: 10.1109/JLT.2006.883683. DOI

Rahmani M, et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater. 2017;27:1700580. doi: 10.1002/adfm.201700580. DOI

Zangeneh Kamali K, et al. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small. 2019;15:1805142. doi: 10.1002/smll.201805142. PubMed DOI

Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 2013;7:171–187. doi: 10.1002/lpor.201200003. DOI

Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science. 2002;297:1160–1163. doi: 10.1126/science.1073765. PubMed DOI

Baffou G, et al. Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano. 2012;6:2452–2458. doi: 10.1021/nn2047586. PubMed DOI

Robert HML, et al. Light-assisted solvothermal chemistry using plasmonic nanoparticles. ACS Omega. 2016;1:2–8. doi: 10.1021/acsomega.6b00019. PubMed DOI PMC

Baffou G, et al. Deterministic temperature shaping using plasmonic nanoparticle assemblies. Nanoscale. 2014;6:8984–8989. doi: 10.1039/C4NR01644K. PubMed DOI

Durdevic L, Robert HML, Wattellier B, Monneret S, Baffou G. Microscale temperature shaping using spatial light modulation on gold nanoparticles. Sci. Rep. 2019;9:4644. doi: 10.1038/s41598-019-40382-3. PubMed DOI PMC

Liu C, Tessier G, Flores Esparza SI, Guillon M, Berto P. Reconfigurable temperature control at the microscale by light shaping. ACS Photonics. 2019;6:422–428. doi: 10.1021/acsphotonics.8b01354. DOI

Heber A, Selmke M, Cichos F. Metal nanoparticle based all-optical photothermal light modulator. ACS Nano. 2014;8:1893–1898. doi: 10.1021/nn406389f. PubMed DOI

Donner JS, Morales-Dalmau J, Alda I, Marty R, Quidant R. Fast and transparent adaptive lens based on plasmonic heating. ACS Photonics. 2015;2:355–360. doi: 10.1021/ph500392c. DOI

Angelini A, Pirani F, Frascella F, Descrovi E. Reconfigurable elastomeric graded-index optical elements controlled by light. Light Sci. Appl. 2018;7:7. doi: 10.1038/s41377-018-0005-1. PubMed DOI PMC

Zhang W, Zappe H, Seifert A. Wafer-scale fabricated thermo-pneumatically tunable microlenses. Light Sci. Appl. 2014;3:e145–e145. doi: 10.1038/lsa.2014.26. DOI

Berto P, et al. Tunable and free-form planar optics. Nat. Photonics. 2019;13:649–656. doi: 10.1038/s41566-019-0486-3. DOI

Ramanan VS, Muthukumar M, Gnanasekaran S, Reddy MJV, Emmanuel B. Green’s functions for the Laplace equation in a 3-layer medium, boundary element integrals and their application to cathodic protection. Eng. Anal. Bound. Elem. 1999;23:777–786. doi: 10.1016/S0955-7997(99)00025-9. DOI

Berto P, Mohamed MSA, Rigneault H, Baffou G. Time-harmonic optical heating of plasmonic nanoparticles. Phys. Rev. B. 2014;90:035439. doi: 10.1103/PhysRevB.90.035439. DOI

Baffou G, et al. Photoinduced heating of nanoparticle arrays. ACS Nano. 2013;7:6478–6488. doi: 10.1021/nn401924n. PubMed DOI

Lin Y-H, Chang W-L, Hsieh C-L. Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express. 2014;22:9159. doi: 10.1364/OE.22.009159. PubMed DOI

Pang X, Fischer DG, Visser TD. Generalized Gouy phase for focused partially coherent light and its implications for interferometry. J. Opt. Soc. Am. A. 2012;29:989. doi: 10.1364/JOSAA.29.000989. PubMed DOI

Subramanian, R., Ti, S.-C., Tan, L., Darst, S. A. & Kapoor, T. M. Marking and Measuring Single Microtubules by PRC1 and Kinesin-4. Cell 154, 377–390 (2013). PubMed PMC

Cowsill BJ, et al. Measurement of the thickness of ultra-thin adsorbed globular protein layers with dual-polarisation interferometry: a comparison with neutron reflectivity. Soft Matter. 2011;7:7223–7230. doi: 10.1039/c1sm05500c. DOI

Yanny K, et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light Sci. Appl. 2020;9:2047–7538. doi: 10.1038/s41377-020-00403-7. PubMed DOI PMC

Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003;15:1957–1962. doi: 10.1021/cm020732l. DOI

Liu M, Guyot-Sionnest P. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B. 2004;108:5882–5888. doi: 10.1021/jp037644o. DOI

Robert HML, et al. Photothermal control of heat-shock protein expression at the single cell level. Small. 2018;14:1801910. doi: 10.1002/smll.201801910. PubMed DOI

Vial S, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir. 2007;23:4606–4611. doi: 10.1021/la063753t. PubMed DOI

Fink G, et al. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat. Cell Biol. 2009;11:717–723. doi: 10.1038/ncb1877. PubMed DOI

Špringer T, Song XC, Ermini ML, Lamačová J, Homola J. Functional gold nanoparticles for optical affinity biosensing. Anal. Bioanal. Chem. 2017;409:4087–4097. doi: 10.1007/s00216-017-0355-1. PubMed DOI

Tinevez JY, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90. doi: 10.1016/j.ymeth.2016.09.016. PubMed DOI

Robert, H. et al. Data for fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale. figshare. Dataset. 10.6084/m9.figshare.14170622.v1 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Surpassing the Diffraction Limit in Label-Free Optical Microscopy

. 2024 Oct 16 ; 11 (10) : 3907-3921. [epub] 20240827

Electro-detachment of kinesin motor domain from microtubule in silico

. 2023 ; 21 () : 1349-1361. [epub] 20230121

Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale

. 2021 May 19 ; 12 (1) : 2921. [epub] 20210519

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.14170622

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...