Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34012021
PubMed Central
PMC8134576
DOI
10.1038/s41467-021-23252-3
PII: 10.1038/s41467-021-23252-3
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- interferenční mikroskopie metody statistika a číselné údaje MeSH
- kovové nanočástice ultrastruktura MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- mikroskopie fázově kontrastní metody statistika a číselné údaje MeSH
- mikrotubuly metabolismus ultrastruktura MeSH
- nanotechnologie MeSH
- nanotrubičky ultrastruktura MeSH
- optické jevy MeSH
- počítačová simulace MeSH
- proteiny asociované s mikrotubuly metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- Schizosaccharomyces pombe - proteiny metabolismus MeSH
- světlo MeSH
- tubulin metabolismus MeSH
- zlato MeSH
- zobrazování trojrozměrné metody statistika a číselné údaje MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Ase1 protein, S pombe MeSH Prohlížeč
- PRC1 protein, human MeSH Prohlížeč
- proteiny asociované s mikrotubuly MeSH
- proteiny buněčného cyklu MeSH
- Schizosaccharomyces pombe - proteiny MeSH
- tubulin MeSH
- zlato MeSH
Spatial light modulators have become an essential tool for advanced microscopy, enabling breakthroughs in 3D, phase, and super-resolution imaging. However, continuous spatial-light modulation that is capable of capturing sub-millisecond microscopic motion without diffraction artifacts and polarization dependence is challenging. Here we present a photothermal spatial light modulator (PT-SLM) enabling fast phase imaging for nanoscopic 3D reconstruction. The PT-SLM can generate a step-like wavefront change, free of diffraction artifacts, with a high transmittance and a modulation efficiency independent of light polarization. We achieve a phase-shift > π and a response time as short as 70 µs with a theoretical limit in the sub microsecond range. We used the PT-SLM to perform quantitative phase imaging of sub-diffractional species to decipher the 3D nanoscopic displacement of microtubules and study the trajectory of a diffusive microtubule-associated protein, providing insights into the mechanism of protein navigation through a complex microtubule network.
Zobrazit více v PubMed
Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica. 1942;9:974–986. doi: 10.1016/S0031-8914(42)80079-8. DOI
Ellis GW. Holomicrography: transformation of image during reconstruction of a posteriori. Science. 1966;154:1195–1197. doi: 10.1126/science.154.3753.1195. PubMed DOI
Nomarski G. Nouveau dispositif pour lobservation en contraste de phase differentiel. J. Phys. Radium. 1955;16:S88–S88.
Curtis AS. The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 1964;20:199–215. doi: 10.1083/jcb.20.2.199. PubMed DOI PMC
Wolf, E. Progress in optics. Vol. 57 (Elsevier, 2012).
Park YK, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat. Photonics. 2018;12:578–589. doi: 10.1038/s41566-018-0253-x. DOI
Kandel ME, et al. Epi-illumination gradient light interference microscopy for imaging opaque structures. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-12634-3. PubMed DOI PMC
Bon P, et al. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy. Nat. Commun. 2015;6:1–8. doi: 10.1038/ncomms8764. PubMed DOI PMC
Kandel ME, Teng KW, Selvin PR, Popescu G. Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano. 2017;11:647–655. doi: 10.1021/acsnano.6b06945. PubMed DOI
Yang Y, Zhai C, Zeng Q, Khan AL, Yu H. Quantitative amplitude and phase imaging with interferometric plasmonic microscopy. ACS Nano. 2019;13:13595–13601. doi: 10.1021/acsnano.9b08259. PubMed DOI
Bouchal P, et al. High-resolution quantitative phase imaging of plasmonic metasurfaces with sensitivity down to a single nanoantenna. Nano Lett. 2019;19:1242–1250. doi: 10.1021/acs.nanolett.8b04776. PubMed DOI
Lindfors K, Kalkbrenner T, Stoller P, Sandoghdar V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 2004;93:037401. doi: 10.1103/PhysRevLett.93.037401. PubMed DOI
Piliarik M, Sandoghdar V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 2014;5:4495. doi: 10.1038/ncomms5495. PubMed DOI
Holanová K, Vala M, Piliarik M. Optical imaging and localization of prospective scattering labels smaller than a single protein. Opt. Laser Technol. 2019;109:323–327. doi: 10.1016/j.optlastec.2018.08.014. DOI
Taylor RW, et al. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics. 2019;13:480–487. doi: 10.1038/s41566-019-0414-6. DOI
Gad-el-Hak, M. MEMS: Introduction and Fundamentals, (CRC press, 2005).
Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 2011;5:81–101. doi: 10.1002/lpor.200900047. DOI
Rubinsztein-Dunlop H, et al. Roadmap on structured light. J. Opt. 2017;19:013001. doi: 10.1088/2040-8978/19/1/013001. DOI
Pavani SRP, et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl Acad. Sci. USA. 2009;106:2995–2999. doi: 10.1073/pnas.0900245106. PubMed DOI PMC
Tzang O, et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat. Photonics. 2019;13:788–793. doi: 10.1038/s41566-019-0503-6. DOI
Gould TJ, Burke D, Bewersdorf J, Booth MJ. Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt. Express. 2012;20:20998. doi: 10.1364/OE.20.020998. PubMed DOI PMC
Nikolajsen T, Leosson K, Bozhevolnyi SI. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 2004;85:5833–5835. doi: 10.1063/1.1835997. DOI
Mattiussi GA, Gagnon G, Lahoud N, Berini P. Thermally activated variable attenuation of long-range surface plasmon-polariton waves. J. Light. Technol. 2006;24:4391–4402. doi: 10.1109/JLT.2006.883683. DOI
Rahmani M, et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater. 2017;27:1700580. doi: 10.1002/adfm.201700580. DOI
Zangeneh Kamali K, et al. Reversible image contrast manipulation with thermally tunable dielectric metasurfaces. Small. 2019;15:1805142. doi: 10.1002/smll.201805142. PubMed DOI
Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon. Rev. 2013;7:171–187. doi: 10.1002/lpor.201200003. DOI
Boyer D, Tamarat P, Maali A, Lounis B, Orrit M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science. 2002;297:1160–1163. doi: 10.1126/science.1073765. PubMed DOI
Baffou G, et al. Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano. 2012;6:2452–2458. doi: 10.1021/nn2047586. PubMed DOI
Robert HML, et al. Light-assisted solvothermal chemistry using plasmonic nanoparticles. ACS Omega. 2016;1:2–8. doi: 10.1021/acsomega.6b00019. PubMed DOI PMC
Baffou G, et al. Deterministic temperature shaping using plasmonic nanoparticle assemblies. Nanoscale. 2014;6:8984–8989. doi: 10.1039/C4NR01644K. PubMed DOI
Durdevic L, Robert HML, Wattellier B, Monneret S, Baffou G. Microscale temperature shaping using spatial light modulation on gold nanoparticles. Sci. Rep. 2019;9:4644. doi: 10.1038/s41598-019-40382-3. PubMed DOI PMC
Liu C, Tessier G, Flores Esparza SI, Guillon M, Berto P. Reconfigurable temperature control at the microscale by light shaping. ACS Photonics. 2019;6:422–428. doi: 10.1021/acsphotonics.8b01354. DOI
Heber A, Selmke M, Cichos F. Metal nanoparticle based all-optical photothermal light modulator. ACS Nano. 2014;8:1893–1898. doi: 10.1021/nn406389f. PubMed DOI
Donner JS, Morales-Dalmau J, Alda I, Marty R, Quidant R. Fast and transparent adaptive lens based on plasmonic heating. ACS Photonics. 2015;2:355–360. doi: 10.1021/ph500392c. DOI
Angelini A, Pirani F, Frascella F, Descrovi E. Reconfigurable elastomeric graded-index optical elements controlled by light. Light Sci. Appl. 2018;7:7. doi: 10.1038/s41377-018-0005-1. PubMed DOI PMC
Zhang W, Zappe H, Seifert A. Wafer-scale fabricated thermo-pneumatically tunable microlenses. Light Sci. Appl. 2014;3:e145–e145. doi: 10.1038/lsa.2014.26. DOI
Berto P, et al. Tunable and free-form planar optics. Nat. Photonics. 2019;13:649–656. doi: 10.1038/s41566-019-0486-3. DOI
Ramanan VS, Muthukumar M, Gnanasekaran S, Reddy MJV, Emmanuel B. Green’s functions for the Laplace equation in a 3-layer medium, boundary element integrals and their application to cathodic protection. Eng. Anal. Bound. Elem. 1999;23:777–786. doi: 10.1016/S0955-7997(99)00025-9. DOI
Berto P, Mohamed MSA, Rigneault H, Baffou G. Time-harmonic optical heating of plasmonic nanoparticles. Phys. Rev. B. 2014;90:035439. doi: 10.1103/PhysRevB.90.035439. DOI
Baffou G, et al. Photoinduced heating of nanoparticle arrays. ACS Nano. 2013;7:6478–6488. doi: 10.1021/nn401924n. PubMed DOI
Lin Y-H, Chang W-L, Hsieh C-L. Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express. 2014;22:9159. doi: 10.1364/OE.22.009159. PubMed DOI
Pang X, Fischer DG, Visser TD. Generalized Gouy phase for focused partially coherent light and its implications for interferometry. J. Opt. Soc. Am. A. 2012;29:989. doi: 10.1364/JOSAA.29.000989. PubMed DOI
Subramanian, R., Ti, S.-C., Tan, L., Darst, S. A. & Kapoor, T. M. Marking and Measuring Single Microtubules by PRC1 and Kinesin-4. Cell 154, 377–390 (2013). PubMed PMC
Cowsill BJ, et al. Measurement of the thickness of ultra-thin adsorbed globular protein layers with dual-polarisation interferometry: a comparison with neutron reflectivity. Soft Matter. 2011;7:7223–7230. doi: 10.1039/c1sm05500c. DOI
Yanny K, et al. Miniscope3D: optimized single-shot miniature 3D fluorescence microscopy. Light Sci. Appl. 2020;9:2047–7538. doi: 10.1038/s41377-020-00403-7. PubMed DOI PMC
Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003;15:1957–1962. doi: 10.1021/cm020732l. DOI
Liu M, Guyot-Sionnest P. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B. 2004;108:5882–5888. doi: 10.1021/jp037644o. DOI
Robert HML, et al. Photothermal control of heat-shock protein expression at the single cell level. Small. 2018;14:1801910. doi: 10.1002/smll.201801910. PubMed DOI
Vial S, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM. Plasmon coupling in layer-by-layer assembled gold nanorod films. Langmuir. 2007;23:4606–4611. doi: 10.1021/la063753t. PubMed DOI
Fink G, et al. The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat. Cell Biol. 2009;11:717–723. doi: 10.1038/ncb1877. PubMed DOI
Špringer T, Song XC, Ermini ML, Lamačová J, Homola J. Functional gold nanoparticles for optical affinity biosensing. Anal. Bioanal. Chem. 2017;409:4087–4097. doi: 10.1007/s00216-017-0355-1. PubMed DOI
Tinevez JY, et al. TrackMate: an open and extensible platform for single-particle tracking. Methods. 2017;115:80–90. doi: 10.1016/j.ymeth.2016.09.016. PubMed DOI
Robert, H. et al. Data for fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale. figshare. Dataset. 10.6084/m9.figshare.14170622.v1 PubMed PMC
Surpassing the Diffraction Limit in Label-Free Optical Microscopy
Electro-detachment of kinesin motor domain from microtubule in silico
Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale
figshare
10.6084/m9.figshare.14170622