Surpassing the Diffraction Limit in Label-Free Optical Microscopy

. 2024 Oct 16 ; 11 (10) : 3907-3921. [epub] 20240827

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39429866

Super-resolution optical microscopy has enhanced our ability to visualize biological structures on the nanoscale. Fluorescence-based techniques are today irreplaceable in exploring the structure and dynamics of biological matter with high specificity and resolution. However, the fluorescence labeling concept narrows the range of observed interactions and fundamentally limits the spatiotemporal resolution. In contrast, emerging label-free imaging methods are not inherently limited by speed and have the potential to capture the entirety of complex biological processes and dynamics. While pushing a complex unlabeled microscopy image beyond the diffraction limit to single-molecule resolution and capturing dynamic processes at biomolecular time scales is widely regarded as unachievable, recent experimental strides suggest that elements of this vision might be already in place. These techniques derive signals directly from the sample using inherent optical phenomena, such as elastic and inelastic scattering, thereby enabling the measurement of additional properties, such as molecular mass, orientation, or chemical composition. This perspective aims to identify the cornerstones of future label-free super-resolution imaging techniques, discuss their practical applications and theoretical challenges, and explore directions that promise to enhance our understanding of complex biological systems through innovative optical advancements. Drawing on both traditional and emerging techniques, label-free super-resolution microscopy is evolving to offer detailed and dynamic imaging of living cells, surpassing the capabilities of conventional methods for visualizing biological complexities without the use of labels.

Zobrazit více v PubMed

Renz M. Fluorescence Microscopy-a Historical and Technical Perspective. Cytom. Part J. Int. Soc. Anal. Cytol. 2013, 83 (9), 767–779. 10.1002/cyto.a.22295. PubMed DOI

Betzig E.; Patterson G. H.; Sougrat R.; Lindwasser O. W.; Olenych S.; Bonifacino J. S.; Davidson M. W.; Lippincott-Schwartz J.; Hess H. F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313 (5793), 1642–1645. 10.1126/science.1127344. PubMed DOI

Hell S. W.; Wichmann J. Breaking the Diffraction Resolution Limit by Stimulated Emission: Stimulated-Emission-Depletion Fluorescence Microscopy. Opt. Lett. 1994, 19 (11), 780–782. 10.1364/ol.19.000780. PubMed DOI

Rust M. J.; Bates M.; Zhuang X. Sub-Diffraction-Limit Imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nat. Methods 2006, 3 (10), 793–796. 10.1038/nmeth929. PubMed DOI PMC

Sharonov A.; Hochstrasser R. M. Wide-Field Subdiffraction Imaging by Accumulated Binding of Diffusing Probes. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (50), 18911–18916. 10.1073/pnas.0609643104. PubMed DOI PMC

Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Für Mikrosk. Anat. 1873, 9 (1), 413–418. 10.1007/BF02956173. DOI

Lelek M.; Gyparaki M. T.; Beliu G.; Schueder F.; Griffié J.; Manley S.; Jungmann R.; Sauer M.; Lakadamyali M.; Zimmer C. Single-Molecule Localization Microscopy. Nat. Rev. Methods Primer 2021, 1 (1), 1–27. 10.1038/s43586-021-00038-x. PubMed DOI PMC

Bujak Ł.; Holanová K.; García Marín A.; Henrichs V.; Barvík I.; Braun M.; Lánský Z.; Piliarik M. Fast Leaps between Millisecond Confinements Govern Ase1 Diffusion along Microtubules. Small Methods 2021, 5 (10), 210037010.1002/smtd.202100370. PubMed DOI

Lindfors K.; Kalkbrenner T.; Stoller P.; Sandoghdar V. Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy. Phys. Rev. Lett. 2004, 93 (3), 03740110.1103/PhysRevLett.93.037401. PubMed DOI

Ewers H.; Jacobsen V.; Klotzsch E.; Smith A. E.; Helenius A.; Sandoghdar V. Label-Free Optical Detection and Tracking of Single Virions Bound to Their Receptors in Supported Membrane Bilayers. Nano Lett. 2007, 7 (8), 2263–2266. 10.1021/nl070766y. PubMed DOI

Kukura P.; Ewers H.; Müller C.; Renn A.; Helenius A.; Sandoghdar V. High-Speed Nanoscopic Tracking of the Position and Orientation of a Single Virus. Nat. Methods 2009, 6 (12), 923–927. 10.1038/nmeth.1395. PubMed DOI

Piliarik M.; Sandoghdar V. Direct Optical Sensing of Single Unlabelled Proteins and Super-Resolution Imaging of Their Binding Sites. Nat. Commun. 2014, 5, 4495.10.1038/ncomms5495. PubMed DOI

Ortega Arroyo J.; Andrecka J.; Spillane K. M.; Billington N.; Takagi Y.; Sellers J. R.; Kukura P. Label-Free, All-Optical Detection, Imaging, and Tracking of a Single Protein. Nano Lett. 2014, 14 (4), 2065–2070. 10.1021/nl500234t. PubMed DOI PMC

Vala M.; Bujak Ł.; Garcia Marin A.; Holanová K.; Henrichs V.; Braun M.; Lánský Z.; Piliarik M. Nanoscopic Structural Fluctuations of Disassembling Microtubules Revealed by Label-Free Super-Resolution Microscopy. Small Methods 2021, 5 (4), 200098510.1002/smtd.202000985. PubMed DOI

Young G.; Hundt N.; Cole D.; Fineberg A.; Andrecka J.; Tyler A.; Olerinyova A.; Ansari A.; Marklund E. G.; Collier M. P.; Chandler S. A.; Tkachenko O.; Allen J.; Crispin M.; Billington N.; Takagi Y.; Sellers J. R.; Eichmann C.; Selenko P.; Frey L.; Riek R.; Galpin M. R.; Struwe W. B.; Benesch J. L. P.; Kukura P. Quantitative Mass Imaging of Single Biological Macromolecules. Science 2018, 360 (6387), 423–427. 10.1126/science.aar5839. PubMed DOI PMC

Astratov V. N.; Sahel Y. B.; Eldar Y. C.; Huang L.; Ozcan A.; Zheludev N.; Zhao J.; Burns Z.; Liu Z.; Narimanov E.; Goswami N.; Popescu G.; Pfitzner E.; Kukura P.; Hsiao Y.-T.; Hsieh C.-L.; Abbey B.; Diaspro A.; LeGratiet A.; Bianchini P.; Shaked N. T.; Simon B.; Verrier N.; Debailleul M.; Haeberlé O.; Wang S.; Liu M.; Bai Y.; Cheng J.-X.; Kariman B. S.; Fujita K.; Sinvani M.; Zalevsky Z.; Li X.; Huang G.-J.; Chu S.-W.; Tzang O.; Hershkovitz D.; Cheshnovsky O.; Huttunen M. J.; Stanciu S. G.; Smolyaninova V. N.; Smolyaninov I. I.; Leonhardt U.; Sahebdivan S.; Wang Z.; Luk’yanchuk B.; Wu L.; Maslov A. V.; Jin B.; Simovski C. R.; Perrin S.; Montgomery P.; Lecler S. Roadmap on Label-Free Super-Resolution Imaging. Laser Photonics Rev. 2023, 17 (12), 220002910.1002/lpor.202200029. PubMed DOI PMC

Leighton R. E.; Alperstein A. M.; Frontiera R. R. Label-Free Super-Resolution Imaging Techniques. Annu. Rev. Anal. Chem. 2022, 15 (1), 37–55. 10.1146/annurev-anchem-061020-014723. PubMed DOI PMC

Astratov V.Label-Free Super-Resolution Microscopy, 1st ed.; Springer: Cham, 2019. 10.1007/978-3-030-21722-8. DOI

Van Aert S.; Van Dyck D.; den Dekker A. J. Resolution of Coherent and Incoherent Imaging Systems Reconsidered - Classical Criteria and a Statistical Alternative. Opt. Express 2006, 14 (9), 3830–3839. 10.1364/OE.14.003830. PubMed DOI

Born M.; Wolf E.; Bhatia A. B.; Clemmow P. C.; Gabor D.; Stokes A. R.; Taylor A. M.; Wayman P. A.; Wilcock W. L.. Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, 1999. 10.1017/CBO9781139644181. DOI

Goodman J. W.Introduction To Fourier Optics, 2nd ed.; McGraw-Hill, Inc., NY, 1996.

Micó V.; Zalevsky Z.; Ferreira C.; García J. Superresolution Digital Holographic Microscopy for Three-Dimensional Samples. Opt. Express 2008, 16 (23), 19260–19270. 10.1364/OE.16.019260. PubMed DOI

Cotte Y.; Toy F.; Jourdain P.; Pavillon N.; Boss D.; Magistretti P.; Marquet P.; Depeursinge C. Marker-Free Phase Nanoscopy. Nat. Photonics 2013, 7 (2), 113–117. 10.1038/nphoton.2012.329. DOI

Chowdhury S.; Eldridge W. J.; Wax A.; Izatt J. A. Structured Illumination Multimodal 3D-Resolved Quantitative Phase and Fluorescence Sub-Diffraction Microscopy. Biomed. Opt. Express 2017, 8 (5), 2496–2518. 10.1364/BOE.8.002496. PubMed DOI PMC

Ronchi V. Resolving Power of Calculated and Detected Images. JOSA 1961, 51 (4), 458–460. 10.1364/JOSA.51.0458_1. DOI

Weisenburger S.; Sandoghdar V. Light Microscopy: An Ongoing Contemporary Revolution. Contemp. Phys. 2015, 56 (2), 123–143. 10.1080/00107514.2015.1026557. DOI

Prakash K.; Diederich B.; Heintzmann R.; Schermelleh L. Super-Resolution Microscopy: A Brief History and New Avenues. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2022, 380 (2220), 2021011010.1098/rsta.2021.0110. PubMed DOI PMC

Schermelleh L.; Ferrand A.; Huser T.; Eggeling C.; Sauer M.; Biehlmaier O.; Drummen G. P. C. Super-Resolution Microscopy Demystified. Nat. Cell Biol. 2019, 21 (1), 72–84. 10.1038/s41556-018-0251-8. PubMed DOI

Huang B.; Babcock H.; Zhuang X. Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells. Cell 2010, 143 (7), 1047–1058. 10.1016/j.cell.2010.12.002. PubMed DOI PMC

Gustafsson M. G. L. Surpassing the Lateral Resolution Limit by a Factor of Two Using Structured Illumination Microscopy. J. Microsc. 2000, 198 (2), 82–87. 10.1046/j.1365-2818.2000.00710.x. PubMed DOI

Gustafsson M. G. L. Nonlinear Structured-Illumination Microscopy: Wide-Field Fluorescence Imaging with Theoretically Unlimited Resolution. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (37), 13081–13086. 10.1073/pnas.0406877102. PubMed DOI PMC

Heintzmann R.; Huser T. Super-Resolution Structured Illumination Microscopy. Chem. Rev. 2017, 117 (23), 13890–13908. 10.1021/acs.chemrev.7b00218. PubMed DOI

Hell S. W.; Jakobs S.; Kastrup L. Imaging and Writing at the Nanoscale with Focused Visible Light through Saturable Optical Transitions. Appl. Phys. A: Mater. Sci. Process. 2003, 77 (7), 859–860. 10.1007/s00339-003-2292-4. DOI

Grotjohann T.; Testa I.; Leutenegger M.; Bock H.; Urban N. T.; Lavoie-Cardinal F.; Willig K. I.; Eggeling C.; Jakobs S.; Hell S. W. Diffraction-Unlimited All-Optical Imaging and Writing with a Photochromic GFP. Nature 2011, 478 (7368), 204–208. 10.1038/nature10497. PubMed DOI

Wicker K.; Heintzmann R. Resolving a Misconception about Structured Illumination. Nat. Photonics 2014, 8 (5), 342–344. 10.1038/nphoton.2014.88. DOI

Vicidomini G.; Bianchini P.; Diaspro A. STED Super-Resolved Microscopy. Nat. Methods 2018, 15 (3), 173–182. 10.1038/nmeth.4593. PubMed DOI

Blom H.; Widengren J. Stimulated Emission Depletion Microscopy. Chem. Rev. 2017, 117 (11), 7377–7427. 10.1021/acs.chemrev.6b00653. PubMed DOI

Heintzmann R.; Gustafsson M. G. L. Subdiffraction Resolution in Continuous Samples. Nat. Photonics 2009, 3 (7), 362–364. 10.1038/nphoton.2009.102. DOI

Bates M.; Jones S. A.; Zhuang X. Stochastic Optical Reconstruction Microscopy (STORM): A Method for Superresolution Fluorescence Imaging. Cold Spring Harb. Protoc. 2013, 2013 (6), 498–520. 10.1101/pdb.top075143. PubMed DOI

Henriques R.; Griffiths C.; Hesper Rego E.; Mhlanga M. M. PALM and STORM: Unlocking Live-Cell Super-Resolution. Biopolymers 2011, 95 (5), 322–331. 10.1002/bip.21586. PubMed DOI

Jungmann R.; Steinhauer C.; Scheible M.; Kuzyk A.; Tinnefeld P.; Simmel F. C. Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami. Nano Lett. 2010, 10 (11), 4756–4761. 10.1021/nl103427w. PubMed DOI

Chung K. K. H.; Zhang Z.; Kidd P.; Zhang Y.; Williams N. D.; Rollins B.; Yang Y.; Lin C.; Baddeley D.; Bewersdorf J. Fluorogenic DNA-PAINT for Faster, Low-Background Super-Resolution Imaging. Nat. Methods 2022, 19 (5), 554–559. 10.1038/s41592-022-01464-9. PubMed DOI PMC

Balzarotti F.; Eilers Y.; Gwosch K. C.; Gynnå A. H.; Westphal V.; Stefani F. D.; Elf J.; Hell S. W. Nanometer Resolution Imaging and Tracking of Fluorescent Molecules with Minimal Photon Fluxes. Science 2017, 355 (6325), 606–612. 10.1126/science.aak9913. PubMed DOI

Eilers Y.; Ta H.; Gwosch K. C.; Balzarotti F.; Hell S. W. MINFLUX Monitors Rapid Molecular Jumps with Superior Spatiotemporal Resolution. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (24), 6117–6122. 10.1073/pnas.1801672115. PubMed DOI PMC

Wirth J. O.; Scheiderer L.; Engelhardt T.; Engelhardt J.; Matthias J.; Hell S. W. MINFLUX Dissects the Unimpeded Walking of Kinesin-1. Science 2023, 379 (6636), 1004–1010. 10.1126/science.ade2650. PubMed DOI

Chen F.; Tillberg P. W.; Boyden E. S. Expansion Microscopy. Science 2015, 347 (6221), 543–548. 10.1126/science.1260088. PubMed DOI PMC

Wassie A. T.; Zhao Y.; Boyden E. S. Expansion Microscopy: Principles and Uses in Biological Research. Nat. Methods 2019, 16 (1), 33–41. 10.1038/s41592-018-0219-4. PubMed DOI PMC

Yu C.-C.; Barry N. C.; Wassie A. T.; Sinha A.; Bhattacharya A.; Asano S.; Zhang C.; Chen F.; Hobert O.; Goodman M. B.; Haspel G.; Boyden E. S. Expansion Microscopy of C. Elegans. eLife 2020, 9, e4624910.7554/eLife.46249. PubMed DOI PMC

Gao M.; Maraspini R.; Beutel O.; Zehtabian A.; Eickholt B.; Honigmann A.; Ewers H. Expansion Stimulated Emission Depletion Microscopy (ExSTED). ACS Nano 2018, 12 (5), 4178–4185. 10.1021/acsnano.8b00776. PubMed DOI

Zwettler F. U.; Reinhard S.; Gambarotto D.; Bell T. D. M.; Hamel V.; Guichard P.; Sauer M. Molecular Resolution Imaging by Post-Labeling Expansion Single-Molecule Localization Microscopy (Ex-SMLM). Nat. Commun. 2020, 11 (1), 3388.10.1038/s41467-020-17086-8. PubMed DOI PMC

Halpern A. R.; Alas G. C. M.; Chozinski T. J.; Paredez A. R.; Vaughan J. C. Hybrid Structured Illumination Expansion Microscopy Reveals Microbial Cytoskeleton Organization. ACS Nano 2017, 11 (12), 12677–12686. 10.1021/acsnano.7b07200. PubMed DOI PMC

Xu H.; Tong Z.; Ye Q.; Sun T.; Hong Z.; Zhang L.; Bortnick A.; Cho S.; Beuzer P.; Axelrod J.; Hu Q.; Wang M.; Evans S. M.; Murre C.; Lu L.-F.; Sun S.; Corbett K. D.; Cang H. Molecular Organization of Mammalian Meiotic Chromosome Axis Revealed by Expansion STORM Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (37), 18423–18428. 10.1073/pnas.1902440116. PubMed DOI PMC

Tillberg P. W.; Chen F.; Piatkevich K. D.; Zhao Y.; Yu C.-C.; English B. P.; Gao L.; Martorell A.; Suk H.-J.; Yoshida F.; DeGennaro E. M.; Roossien D. H.; Gong G.; Seneviratne U.; Tannenbaum S. R.; Desimone R.; Cai D.; Boyden E. S. Protein-Retention Expansion Microscopy of Cells and Tissues Labeled Using Standard Fluorescent Proteins and Antibodies. Nat. Biotechnol. 2016, 34 (9), 987–992. 10.1038/nbt.3625. PubMed DOI PMC

Shi X.; Li Q.; Dai Z.; Tran A. A.; Feng S.; Ramirez A. D.; Lin Z.; Wang X.; Chow T. T.; Chen J.; Kumar D.; McColloch A. R.; Reiter J. F.; Huang E. J.; Seiple I. B.; Huang B. Label-Retention Expansion Microscopy. J. Cell Biol. 2021, 220 (9), e20210506710.1083/jcb.202105067. PubMed DOI PMC

Wang M.; Zhang C.; Yan S.; Chen T.; Fang H.; Yuan X. Wide-Field Super-Resolved Raman Imaging of Carbon Materials. ACS Photonics 2021, 8 (6), 1801–1809. 10.1021/acsphotonics.1c00392. DOI

Park J. H.; Lee S.-W.; Lee E. S.; Lee J. Y. A Method for Super-Resolved CARS Microscopy with Structured Illumination in Two Dimensions. Opt. Express 2014, 22 (8), 9854–9870. 10.1364/OE.22.009854. PubMed DOI

Lv X.; Gong L.; Lin S.; Jin P.; Huang Z. Super-Resolution Stimulated Raman Scattering Microscopy with the Phase-Shifted Spatial Frequency Modulation. Opt. Lett. 2022, 47 (17), 4552–4555. 10.1364/OL.463087. PubMed DOI

Wu M.; Chen S.; Camp S.; Schafer K. J.; Gaarde M. B. Theory of Strong-Field Attosecond Transient Absorption. J. Phys. B At. Mol. Opt. Phys. 2016, 49 (6), 06200310.1088/0953-4075/49/6/062003. DOI

Fu P.; Cao W.; Chen T.; Huang X.; Le T.; Zhu S.; Wang D.-W.; Lee H. J.; Zhang D. Super-Resolution Imaging of Non-Fluorescent Molecules by Photothermal Relaxation Localization Microscopy. Nat. Photonics 2023, 17 (4), 330–337. 10.1038/s41566-022-01143-3. DOI

Gong L.; Zheng W.; Ma Y.; Huang Z. Higher-Order Coherent Anti-Stokes Raman Scattering Microscopy Realizes Label-Free Super-Resolution Vibrational Imaging. Nat. Photonics 2020, 14 (2), 115–122. 10.1038/s41566-019-0535-y. DOI

Berry M. V.; Popescu S. Evolution of Quantum Superoscillations and Optical Superresolution without Evanescent Waves. J. Phys. Math. Gen. 2006, 39 (22), 6965.10.1088/0305-4470/39/22/011. DOI

Chen G.; Wen Z.-Q.; Qiu C.-W. Superoscillation: From Physics to Optical Applications. Light Sci. Appl. 2019, 8 (1), 56.10.1038/s41377-019-0163-9. PubMed DOI PMC

Rogers E. T. F.; Lindberg J.; Roy T.; Savo S.; Chad J. E.; Dennis M. R.; Zheludev N. I. A Super-Oscillatory Lens Optical Microscope for Subwavelength Imaging. Nat. Mater. 2012, 11 (5), 432–435. 10.1038/nmat3280. PubMed DOI

Qin F.; Huang K.; Wu J.; Teng J.; Qiu C.-W.; Hong M. A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance. Adv. Mater. 2017, 29 (8), 160272110.1002/adma.201602721. PubMed DOI

Tang M.; Han Y.; Jia D.; Yang Q.; Cheng J.-X. Far-Field Super-Resolution Chemical Microscopy. Light Sci. Appl. 2023, 12 (1), 137.10.1038/s41377-023-01182-7. PubMed DOI PMC

Wei L.; Min W. Pump-Probe Optical Microscopy for Imaging Nonfluorescent Chromophores. Anal. Bioanal. Chem. 2012, 403 (8), 2197–2202. 10.1007/s00216-012-5890-1. PubMed DOI

Bi Y.; Yang C.; Tong L.; Li H.; Yu B.; Yan S.; Yang G.; Deng M.; Wang Y.; Bao W.; Ye L.; Wang P. Far-Field Transient Absorption Nanoscopy with Sub-50 Nm Optical Super-Resolution. Optica 2020, 7 (10), 1402–1407. 10.1364/OPTICA.402009. DOI

Liu N.; Kumbham M.; Pita I.; Guo Y.; Bianchini P.; Diaspro A.; Tofail S. A. M.; Peremans A.; Silien C. Far-Field Subdiffraction Imaging of Semiconductors Using Nonlinear Transient Absorption Differential Microscopy. ACS Photonics 2016, 3 (3), 478–485. 10.1021/acsphotonics.5b00716. DOI

Yang G.; Yang C.; Chen Y.; Yu B.; Bi Y.; Liao J.; Li H.; Wang H.; Wang Y.; Liu Z.; Gan Z.; Yuan Q.; Wang Y.; Xia J.; Wang P. Direct Imaging of Integrated Circuits in CPU with 60 Nm Super-Resolution Optical Microscope. Nano Lett. 2021, 21 (9), 3887–3893. 10.1021/acs.nanolett.1c00403. PubMed DOI

Wang P.; Slipchenko M. N.; Mitchell J.; Yang C.; Potma E. O.; Xu X.; Cheng J.-X. Far-Field Imaging of Non-Fluorescent Species with Subdiffraction Resolution. Nat. Photonics 2013, 7 (6), 449–453. 10.1038/nphoton.2013.97. PubMed DOI PMC

Watanabe K.; Palonpon A. F.; Smith N. I.; Chiu L.; Kasai A.; Hashimoto H.; Kawata S.; Fujita K. Structured Line Illumination Raman Microscopy. Nat. Commun. 2015, 6 (1), 1009510.1038/ncomms10095. PubMed DOI PMC

Tormo A. D.; Khalenkow D.; Saurav K.; Skirtach A. G.; Thomas N. L. Superresolution 4π Raman Microscopy. Opt. Lett. 2017, 42 (21), 4410–4413. 10.1364/OL.42.004410. PubMed DOI

Whaley-Mayda L.; Guha A.; Penwell S. B.; Tokmakoff A. Fluorescence-Encoded Infrared Vibrational Spectroscopy with Single-Molecule Sensitivity. J. Am. Chem. Soc. 2021, 143 (8), 3060–3064. 10.1021/jacs.1c00542. PubMed DOI

Wang H.; Lee D.; Cao Y.; Bi X.; Du J.; Miao K.; Wei L. Bond-Selective Fluorescence Imaging with Single-Molecule Sensitivity. Nat. Photonics 2023, 17 (10), 846–855. 10.1038/s41566-023-01243-8. PubMed DOI PMC

Li Z.; Aleshire K.; Kuno M.; Hartland G. V. Super-Resolution Far-Field Infrared Imaging by Photothermal Heterodyne Imaging. J. Phys. Chem. B 2017, 121 (37), 8838–8846. 10.1021/acs.jpcb.7b06065. PubMed DOI

Zhao Z.; Min W. Super-Resolution Photothermal Microscopy. Nat. Photonics 2023, 17 (4), 292–293. 10.1038/s41566-023-01169-1. DOI

Heuke S.; Rigneault H. Coherent Stokes Raman Scattering Microscopy (CSRS). Nat. Commun. 2023, 14 (1), 3337.10.1038/s41467-023-38941-4. PubMed DOI PMC

ChungBoik C.-Y.; Potma E. O. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy. Annu. Rev. Phys. Chem. 2013, 64 (1), 77–99. 10.1146/annurev-physchem-040412-110103. PubMed DOI PMC

Duncan M. D.; Reintjes J.; Manuccia T. J. Scanning Coherent Anti-Stokes Raman Microscope. Opt. Lett. 1982, 7 (8), 350–352. 10.1364/OL.7.000350. PubMed DOI

Prince R. C.; Frontiera R. R.; Potma E. O. Stimulated Raman Scattering: From Bulk to Nano. Chem. Rev. 2017, 117 (7), 5070–5094. 10.1021/acs.chemrev.6b00545. PubMed DOI PMC

Adamczyk A.; Orzechowska S.; Nowakowska A. M.; Brzozowski K.; Majzner K.; Baranska M. Stimulated Raman Scattering Microscopy in the Analysis of Cancer Cells – A Review and Own Research. TrAC Trends Anal. Chem. 2023, 169, 11736610.1016/j.trac.2023.117366. DOI

Freudiger C. W.; Min W.; Saar B. G.; Lu S.; Holtom G. R.; He C.; Tsai J. C.; Kang J. X.; Xie X. S. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322 (5909), 1857–1861. 10.1126/science.1165758. PubMed DOI PMC

Silva W. R.; Graefe C. T.; Frontiera R. R. Toward Label-Free Super-Resolution Microscopy. ACS Photonics 2016, 3 (1), 79–86. 10.1021/acsphotonics.5b00467. DOI

Gasecka A.; Daradich A.; Dehez H.; Piché M.; Côté D. Resolution and Contrast Enhancement in Coherent Anti-Stokes Raman-Scattering Microscopy. Opt. Lett. 2013, 38 (21), 4510–4513. 10.1364/OL.38.004510. PubMed DOI

Gong L.; Zheng W.; Ma Y.; Huang Z. Saturated Stimulated-Raman-Scattering Microscopy for Far-Field Superresolution Vibrational Imaging. Phys. Rev. Appl. 2019, 11 (3), 03404110.1103/PhysRevApplied.11.034041. DOI

Jang H.; Li Y.; Fung A. A.; Bagheri P.; Hoang K.; Skowronska-Krawczyk D.; Chen X.; Wu J. Y.; Bintu B.; Shi L. Super-Resolution SRS Microscopy with A-PoD. Nat. Methods 2023, 20 (3), 448–458. 10.1038/s41592-023-01779-1. PubMed DOI PMC

Xiong H.; Shi L.; Wei L.; Shen Y.; Long R.; Zhao Z.; Min W. Stimulated Raman Excited Fluorescence Spectroscopy and Imaging. Nat. Photonics 2019, 13 (6), 412–417. 10.1038/s41566-019-0396-4. PubMed DOI PMC

Xiong H.; Qian N.; Miao Y.; Zhao Z.; Chen C.; Min W. Super-Resolution Vibrational Microscopy by Stimulated Raman Excited Fluorescence. Light Sci. Appl. 2021, 10 (1), 87.10.1038/s41377-021-00518-5. PubMed DOI PMC

Shou J.; Komazawa A.; Wachi Y.; Kawatani M.; Fujioka H.; Spratt S. J.; Mizuguchi T.; Oguchi K.; Akaboshi H.; Obata F.; Tachibana R.; Yasunaga S.; Mita Y.; Misawa Y.; Kojima R.; Urano Y.; Kamiya M.; Ozeki Y. Super-Resolution Vibrational Imaging Based on Photoswitchable Raman Probe. Sci. Adv. 2023, 9 (24), eade911810.1126/sciadv.ade9118. PubMed DOI PMC

Wei L.; Chen Z.; Shi L.; Long R.; Anzalone A. V.; Zhang L.; Hu F.; Yuste R.; Cornish V. W.; Min W. Super-Multiplex Vibrational Imaging. Nature 2017, 544 (7651), 465–470. 10.1038/nature22051. PubMed DOI PMC

Qian C.; Miao K.; Lin L.-E.; Chen X.; Du J.; Wei L. Super-Resolution Label-Free Volumetric Vibrational Imaging. Nat. Commun. 2021, 12 (1), 3648.10.1038/s41467-021-23951-x. PubMed DOI PMC

Shi L.; Klimas A.; Gallagher B.; Cheng Z.; Fu F.; Wijesekara P.; Miao Y.; Ren X.; Zhao Y.; Min W. Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy. Adv. Sci. 2022, 9 (20), 220031510.1002/advs.202200315. PubMed DOI PMC

Klimas A.; Gallagher B. R.; Wijesekara P.; Fekir S.; Stolz D. B.; Watkins S.; Barth A. L.; Moore C. I.; Ren X.; Zhao Y. Nanoscale Imaging of Biomolecules Using Molecule Anchorable Gel-Enabled Nanoscale In-Situ Fluorescence Microscopy. Microsc. Microanal. 2022, 28 (S1), 1568–1569. 10.1017/S1431927622006298. DOI

Ament I.; Prasad J.; Henkel A.; Schmachtel S.; Sönnichsen C. Single Unlabeled Protein Detection on Individual Plasmonic Nanoparticles. Nano Lett. 2012, 12 (2), 1092–1095. 10.1021/nl204496g. PubMed DOI

Baaske M. D.; Foreman M. R.; Vollmer F. Single-Molecule Nucleic Acid Interactions Monitored on a Label-Free Microcavity Biosensor Platform. Nat. Nanotechnol. 2014, 9 (11), 933–939. 10.1038/nnano.2014.180. PubMed DOI

Priest L.; Peters J. S.; Kukura P. Scattering-Based Light Microscopy: From Metal Nanoparticles to Single Proteins. Chem. Rev. 2021, 121 (19), 11937–11970. 10.1021/acs.chemrev.1c00271. PubMed DOI PMC

Jacobsen V.; Stoller P.; Brunner C.; Vogel V.; Sandoghdar V. Interferometric Optical Detection and Tracking of Very Small Gold Nanoparticles at a Water-Glass Interface. Opt. Express 2006, 14 (1), 405–414. 10.1364/OPEX.14.000405. PubMed DOI

Huang Y.-F.; Zhuo G.-Y.; Chou C.-Y.; Lin C.-H.; Chang W.; Hsieh C.-L. Coherent Brightfield Microscopy Provides the Spatiotemporal Resolution To Study Early Stage Viral Infection in Live Cells. ACS Nano 2017, 11 (3), 2575–2585. 10.1021/acsnano.6b05601. PubMed DOI

Hsiao Y.-T.; Wu T.-Y.; Wu B.-K.; Chu S.-W.; Hsieh C.-L. Spinning Disk Interferometric Scattering Confocal Microscopy Captures Millisecond Timescale Dynamics of Living Cells. Opt. Express 2022, 30 (25), 45233–45245. 10.1364/OE.471935. PubMed DOI

Špačková B.; Klein Moberg H.; Fritzsche J.; Tenghamn J.; Sjösten G.; Šípová-Jungová H.; Albinsson D.; Lubart Q.; van Leeuwen D.; Westerlund F.; Midtvedt D.; Esbjörner E. K.; Käll M.; Volpe G.; Langhammer C. Label-Free Nanofluidic Scattering Microscopy of Size and Mass of Single Diffusing Molecules and Nanoparticles. Nat. Methods 2022, 19 (6), 751–758. 10.1038/s41592-022-01491-6. PubMed DOI PMC

Novotny L.; Hecht B.. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, 2012. 10.1017/CBO9780511794193. DOI

Mortensen K. I.; Churchman L. S.; Spudich J. A.; Flyvbjerg H. Optimized Localization-Analysis for Single-Molecule Tracking and Super-Resolution Microscopy. Nat. Methods 2010, 7 (5), 377–381. 10.1038/nmeth.1447. PubMed DOI PMC

Lin Y.-H.; Chang W.-L.; Hsieh C.-L. Shot-Noise Limited Localization of Single 20 Nm Gold Particles with Nanometer Spatial Precision within Microseconds. Opt. Express 2014, 22 (8), 9159–9170. 10.1364/OE.22.009159. PubMed DOI

Giannone G.; Hosy E.; Levet F.; Constals A.; Schulze K.; Sobolevsky A. I.; Rosconi M. P.; Gouaux E.; Tampé R.; Choquet D.; Cognet L. Dynamic Superresolution Imaging of Endogenous Proteins on Living Cells at Ultra-High Density. Biophys. J. 2010, 99 (4), 1303–1310. 10.1016/j.bpj.2010.06.005. PubMed DOI PMC

Jungmann R.; Avendaño M. S.; Woehrstein J. B.; Dai M.; Shih W. M.; Yin P. Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 2014, 11 (3), 313–318. 10.1038/nmeth.2835. PubMed DOI PMC

Vala M.; Palounek D.; Robert H. M. L.; Piliarik M. Quantitative Detection of Optical Anisotropy of Single Microtubules by Polarization-Sensitive Interferometric Scattering Microscopy. J. Phys. Appl. Phys. 2021, 54 (20), 20400110.1088/1361-6463/abe669. DOI

Li Y.; Struwe W. B.; Kukura P. Single Molecule Mass Photometry of Nucleic Acids. Nucleic Acids Res. 2020, 48 (17), e9710.1093/nar/gkaa632. PubMed DOI PMC

Asor R.; Kukura P. Characterising Biomolecular Interactions and Dynamics with Mass Photometry. Curr. Opin. Chem. Biol. 2022, 68, 10213210.1016/j.cbpa.2022.102132. PubMed DOI

Ray S.; Mason T. O.; Boyens-Thiele L.; Farzadfard A.; Larsen J. A.; Norrild R. K.; Jahnke N.; Buell A. K. Mass Photometric Detection and Quantification of Nanoscale α-Synuclein Phase Separation. Nat. Chem. 2023, 15 (9), 1306–1316. 10.1038/s41557-023-01244-8. PubMed DOI

Vala M.; Piliarik M. Weighing Single Protein Complexes on the Go. Nat. Methods 2021, 18 (10), 1159–1160. 10.1038/s41592-021-01263-8. PubMed DOI

Heermann T.; Steiert F.; Ramm B.; Hundt N.; Schwille P. Mass-Sensitive Particle Tracking to Elucidate the Membrane-Associated MinDE Reaction Cycle. Nat. Methods 2021, 18 (10), 1239–1246. 10.1038/s41592-021-01260-x. PubMed DOI PMC

Foley E. D. B.; Kushwah M. S.; Young G.; Kukura P. Mass Photometry Enables Label-Free Tracking and Mass Measurement of Single Proteins on Lipid Bilayers. Nat. Methods 2021, 18 (10), 1247–1252. 10.1038/s41592-021-01261-w. PubMed DOI PMC

Spindler S.; Ehrig J.; Stein H.; Sandoghdar V. High-Speed Single Particle Tracking on Model Lipid Membranes. Biophys. J. 2016, 110 (3), 649a.10.1016/j.bpj.2015.11.3473. DOI

Robert H. M.; Holanová K.; Bujak Ł.; Vala M.; Henrichs V.; Lánský Z.; Piliarik M. Fast Photothermal Spatial Light Modulation for Quantitative Phase Imaging at the Nanoscale. Nat. Commun. 2021, 12 (1), 2921.10.1038/s41467-021-23252-3. PubMed DOI PMC

Robert H. M. L.; Čičala M.; Piliarik M. Shaping of Optical Wavefronts Using Light-Patterned Photothermal Metamaterial. Adv. Opt. Mater. 2022, 10 (21), 220096010.1002/adom.202200960. DOI

Brooks N. J.; Liu C.-C.; Hsieh C.-L. Point Spread Function Engineering for Spiral Phase Interferometric Scattering Microscopy Enables Robust 3D Single-Particle Tracking. arXiv.2402.13652 2024, na.10.48550/arXiv.2402.13652. DOI

Thiele J. C.; Pfitzner E.; Kukura P. Single-Protein Optical Holography. Nat. Photonics 2024, 388–395. 10.1038/s41566-024-01405-2. DOI

Huang Y.-F.; Zhuo G.-Y.; Chou C.-Y.; Lin C.-H.; Hsieh C.-L. Label-Free, Ultrahigh-Speed, 3D Observation of Bidirectional and Correlated Intracellular Cargo Transport by Coherent Brightfield Microscopy. Nanoscale 2017, 9 (19), 6567–6574. 10.1039/C7NR00604G. PubMed DOI

Lin S.; He Y.; Feng D.; Piliarik M.; Chen X.-W. Optical Fingerprint of Flat Substrate Surface and Marker-Free Lateral Displacement Detection with Angstrom-Level Precision. Phys. Rev. Lett. 2022, 129 (21), 21320110.1103/PhysRevLett.129.213201. PubMed DOI

Küppers M.; Albrecht D.; Kashkanova A. D.; Lühr J.; Sandoghdar V. Confocal Interferometric Scattering Microscopy Reveals 3D Nanoscopic Structure and Dynamics in Live Cells. Nat. Commun. 2023, 14 (1), 1962.10.1038/s41467-023-37497-7. PubMed DOI PMC

Hummel R. Image Enhancement by Histogram Transformation. Comput. Graph. Image Process. 1977, 6 (2), 184–195. 10.1016/S0146-664X(77)80011-7. DOI

Frieden B. R.Image Enhancement and Restoration. In Picture Processing and Digital Filtering, Topics in Applied Physics; Huang T. S., Ed.; Springer: Berlin, Heidelberg, 1979. 10.1007/3-540-09339-7_19. DOI

Youla D. C.; Webb H. Image Restoration by the Method of Convex Projections: Part 1 Theory. IEEE Trans. Med. Imaging 1982, 1 (2), 81.10.1109/TMI.1982.4307555. PubMed DOI

Dong C.; Loy C. C.; He K.; Tang X.. Learning a Deep Convolutional Network for Image Super-Resolution. In Computer Vision – ECCV 2014, Lecture Notes in Computer Science; Fleet D., Pajdla T., Schiele B., Tuytelaars T., Eds.; Springer International Publishing: Cham, 2014. 10.1007/978-3-319-10593-2_13. DOI

Wang S.; Su Z.; Ying L.; Peng X.; Zhu S.; Liang F.; Feng D.; Liang D.. Accelerating Magnetic Resonance Imaging via Deep Learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI); IEEE, 2016. 10.1109/ISBI.2016.7493320. PubMed DOI PMC

Jin K. H.; McCann M. T.; Froustey E.; Unser M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE Trans. Image Process. 2017, 26 (9), 4509–4522. 10.1109/TIP.2017.2713099. PubMed DOI

Rivenson Y.; Zhang Y.; Günaydın H.; Teng D.; Ozcan A. Phase Recovery and Holographic Image Reconstruction Using Deep Learning in Neural Networks. Light Sci. Appl. 2018, 7 (2), 17141–17141. 10.1038/lsa.2017.141. PubMed DOI PMC

Chen R.; Tang X.; Zhao Y.; Shen Z.; Zhang M.; Shen Y.; Li T.; Chung C. H. Y.; Zhang L.; Wang J.; Cui B.; Fei P.; Guo Y.; Du S.; Yao S. Single-Frame Deep-Learning Super-Resolution Microscopy for Intracellular Dynamics Imaging. Nat. Commun. 2023, 14 (1), 2854.10.1038/s41467-023-38452-2. PubMed DOI PMC

Kumar Gaire S.; Zhang Y.; Li H.; Yu R.; Zhang H. F.; Ying L. Accelerating Multicolor Spectroscopic Single-Molecule Localization Microscopy Using Deep Learning. Biomed. Opt. Express 2020, 11 (5), 2705–2721. 10.1364/BOE.391806. PubMed DOI PMC

Jang S.; Narayanasamy K. K.; Rahm J. V.; Saguy A.; Kompa J.; Dietz M. S.; Johnsson K.; Shechtman Y.; Heilemann M. Neural Network-Assisted Single-Molecule Localization Microscopy with a Weak-Affinity Protein Tag. Biophys. Rep. 2023, 3 (3), 10012310.1016/j.bpr.2023.100123. PubMed DOI PMC

Ouyang W.; Aristov A.; Lelek M.; Hao X.; Zimmer C. Deep Learning Massively Accelerates Super-Resolution Localization Microscopy. Nat. Biotechnol. 2018, 36 (5), 460–468. 10.1038/nbt.4106. PubMed DOI

Wang H.; Rivenson Y.; Jin Y.; Wei Z.; Gao R.; Günaydın H.; Bentolila L. A.; Kural C.; Ozcan A. Deep Learning Enables Cross-Modality Super-Resolution in Fluorescence Microscopy. Nat. Methods 2019, 16 (1), 103–110. 10.1038/s41592-018-0239-0. PubMed DOI PMC

Xu L.; Kan S.; Yu X.; Liu Y.; Fu Y.; Peng Y.; Liang Y.; Cen Y.; Zhu C.; Jiang W. Deep Learning Enables Stochastic Optical Reconstruction Microscopy-like Superresolution Image Reconstruction from Conventional Microscopy. iScience 2023, 26 (11), 10814510.1016/j.isci.2023.108145. PubMed DOI PMC

Gustafsson N.; Culley S.; Ashdown G.; Owen D. M.; Pereira P. M.; Henriques R. Fast Live-Cell Conventional Fluorophore Nanoscopy with ImageJ through Super-Resolution Radial Fluctuations. Nat. Commun. 2016, 7, 12471.10.1038/ncomms12471. PubMed DOI PMC

Chen J.; Fang Q.; Huang L.; Ye X.; Jin L.; Zhang H.; Luo Y.; Zhu M.; Zhang L.; Ji B.; Tian X.; Xu Y. Deep-Learning Accelerated Super-Resolution Radial Fluctuations (SRRF) Enables Real-Time Live Cell Imaging. Opt. Lasers Eng. 2024, 172, 10784010.1016/j.optlaseng.2023.107840. DOI

Speiser A.; Müller L.-R.; Hoess P.; Matti U.; Obara C. J.; Legant W. R.; Kreshuk A.; Macke J. H.; Ries J.; Turaga S. C. Deep Learning Enables Fast and Dense Single-Molecule Localization with High Accuracy. Nat. Methods 2021, 18 (9), 1082–1090. 10.1038/s41592-021-01236-x. PubMed DOI PMC

Hyun Y.; Kim D. Development of Deep-Learning-Based Single-Molecule Localization Image Analysis. Int. J. Mol. Sci. 2022, 23 (13), 6896.10.3390/ijms23136896. PubMed DOI PMC

Qiao C.; Zeng Y.; Meng Q.; Chen X.; Chen H.; Jiang T.; Wei R.; Guo J.; Fu W.; Lu H.; Li D.; Wang Y.; Qiao H.; Wu J.; Li D.; Dai Q. Zero-Shot Learning Enables Instant Denoising and Super-Resolution in Optical Fluorescence Microscopy. Nat. Commun. 2024, 15 (1), 4180.10.1038/s41467-024-48575-9. PubMed DOI PMC

Lei M.; Zhao J.; Zhou J.; Lee H.; Wu Q.; Burns Z.; Chen G.; Liu Z. Super Resolution Label-Free Dark-Field Microscopy by Deep Learning. Nanoscale 2024, 16, 4703.10.1039/D3NR04294D. PubMed DOI

Dahmardeh M.; Mirzaalian Dastjerdi H.; Mazal H.; Köstler H.; Sandoghdar V. Self-Supervised Machine Learning Pushes the Sensitivity Limit in Label-Free Detection of Single Proteins below 10 kDa. Nat. Methods 2023, 20 (3), 442–447. 10.1038/s41592-023-01778-2. PubMed DOI PMC

Pu T.; Ou J.-Y.; Savinov V.; Yuan G.; Papasimakis N.; Zheludev N. I. Unlabeled Far-Field Deeply Subwavelength Topological Microscopy (DSTM). Adv. Sci. 2021, 8 (1), 200288610.1002/advs.202002886. PubMed DOI PMC

Pu T.; Ou J. Y.; Papasimakis N.; Zheludev N. I. Label-Free Deeply Subwavelength Optical Microscopy. Appl. Phys. Lett. 2020, 116, 13110510.1063/5.0003330. DOI

Guo S.-M.; Yeh L.-H.; Folkesson J.; Ivanov I. E.; Krishnan A. P.; Keefe M. G.; Hashemi E.; Shin D.; Chhun B. B.; Cho N. H.; Leonetti M. D.; Han M. H.; Nowakowski T. J.; Mehta S. B. Revealing Architectural Order with Quantitative Label-Free Imaging and Deep Learning. eLife 2020, 9, e5550210.7554/eLife.55502. PubMed DOI PMC

Weigert M.; Schmidt U.; Boothe T.; Müller A.; Dibrov A.; Jain A.; Wilhelm B.; Schmidt D.; Broaddus C.; Culley S.; Rocha-Martins M.; Segovia-Miranda F.; Norden C.; Henriques R.; Zerial M.; Solimena M.; Rink J.; Tomancak P.; Royer L.; Jug F.; Myers E. W. Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy. Nat. Methods 2018, 15 (12), 1090–1097. 10.1038/s41592-018-0216-7. PubMed DOI

Zhang P.; Ma D.; Cheng X.; Tsai A. P.; Tang Y.; Gao H.-C.; Fang L.; Bi C.; Landreth G. E.; Chubykin A. A.; Huang F. Deep Learning-Driven Adaptive Optics for Single-Molecule Localization Microscopy. Nat. Methods 2023, 20 (11), 1748–1758. 10.1038/s41592-023-02029-0. PubMed DOI PMC

Hu Q.; Hailstone M.; Wang J.; Wincott M.; Stoychev D.; Atilgan H.; Gala D.; Chaiamarit T.; Parton R. M.; Antonello J.; Packer A. M.; Davis I.; Booth M. J. Universal Adaptive Optics for Microscopy through Embedded Neural Network Control. Light Sci. Appl. 2023, 12 (1), 270.10.1038/s41377-023-01297-x. PubMed DOI PMC

Li X.; Li Y.; Zhou Y.; Wu J.; Zhao Z.; Fan J.; Deng F.; Wu Z.; Xiao G.; He J.; Zhang Y.; Zhang G.; Hu X.; Chen X.; Zhang Y.; Qiao H.; Xie H.; Li Y.; Wang H.; Fang L.; Dai Q. Real-Time Denoising Enables High-Sensitivity Fluorescence Time-Lapse Imaging beyond the Shot-Noise Limit. Nat. Biotechnol. 2023, 41 (2), 282–292. 10.1038/s41587-022-01450-8. PubMed DOI PMC

Culley S.; Albrecht D.; Jacobs C.; Pereira P. M.; Leterrier C.; Mercer J.; Henriques R. Quantitative Mapping and Minimization of Super-Resolution Optical Imaging Artifacts. Nat. Methods 2018, 15 (4), 263–266. 10.1038/nmeth.4605. PubMed DOI PMC

Gao S.; Xu F.; Li H.; Xue F.; Zhang M.; Xu P.; Zhang F. DETECTOR: Structural Information Guided Artifact Detection for Super-Resolution Fluorescence Microscopy Image. Biomed. Opt. Express 2021, 12 (9), 5751–5769. 10.1364/BOE.431798. PubMed DOI PMC

Holanová K.; Vala M.; Piliarik M. Optical Imaging and Localization of Prospective Scattering Labels Smaller than a Single Protein. Opt. Laser Technol. 2019, 109, 323–327. 10.1016/j.optlastec.2018.08.014. DOI

Taylor R. W.; Mahmoodabadi R. G.; Rauschenberger V.; Giessl A.; Schambony A.; Sandoghdar V. Interferometric Scattering Microscopy Reveals Microsecond Nanoscopic Protein Motion on a Live Cell Membrane. Nat. Photonics 2019, 13 (7), 480–487. 10.1038/s41566-019-0414-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...