Mechanistic Impact of Zinc Deficiency in Human Development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35356730
PubMed Central
PMC8959901
DOI
10.3389/fnut.2022.717064
Knihovny.cz E-zdroje
- Klíčová slova
- Zn deficiency, apoptosis, deoxyribonucleic acid, detoxification, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Zinc (Zn) deficiency in humans is an emerging global health issue affecting approximately two billion people across the globe. The situation prevails due to the intake of Zn deficient grains and vegetables worldwide. Clinical identification of Zn deficiency in humans remains problematic because the symptoms do not appear until impair the vital organs, such as the gastrointestinal track, central nervous system, immune system, skeletal, and nervous system. Lower Zn body levels are also responsible for multiple physiological disorders, such as apoptosis, organs destruction, DNA injuries, and oxidative damage to the cellular components through reactive oxygen species (ROS). The oxidative damage causes chronic inflammation lead toward several chronic diseases, such as heart diseases, cancers, alcohol-related malady, muscular contraction, and neuro-pathogenesis. The present review focused on the physiological and growth-related changes in humans under Zn deficient conditions, mechanisms adopted by the human body under Zn deficiency for the proper functioning of the body systems, and the importance of nutritional and nutraceutical approaches to overcome Zn deficiency in humans and concluded that the biofortified food is the best source of Zn as compared to the chemical supplementation to avoid their negative impacts on human.
College of Life Sciences Yan'an University Yan'an China
Department of Soil Science The Islamia Diversity of Bahawalpur Bahawalpur Pakistan
Institute of Environmental Studies Charles University Prague Prague Czechia
Qaid e Azam Medical College Bahawal Victoria Hospital Bahawalpur Pakistan
Zobrazit více v PubMed
Natasha N, Shahid M, Bibi I, Iqbal J, Khalid S, Murtaza B, et al. . Zinc in soil-plant-human system: a data-analysis review. Sci Tot Environ. (2022) 808:152024. 10.1016/j.scitotenv.2021.152024 PubMed DOI
Li D, Stovall DB, Wang W, Sui G. Advances of zinc signaling studies in prostate cancer. Int J Mol Sci. (2020) 21:667. 10.3390/ijms21020667 PubMed DOI PMC
Attar T. A mini-review on importance and role of trace elements in the human organism. Chem Rev Lett. (2020) 3:117–30. 10.22034/CRL.2020.229025.1058 DOI
Chasapis CT, Ntoupa PS, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arc Toxicol. (2020) 94:1443–60. 10.1007/s00204-020-02702-9 PubMed DOI
Food Security Statistics . The State of Food Insecurity in the World. Italy: Food and Agricultural Organization; (2008).
World Health Organization . Trace Elements in Human Nutrition and Health. Geneva: World Health Organization; (1996).
Hacisalihoglu G. Zinc (Zn): the last nutrient in the alphabet and shedding light on Zn efficiency for the future of crop production under suboptimal Zn. Plants. (2020) 9:1471. 10.3390/plants9111471 PubMed DOI PMC
Mohammadi H, Talebi S, Ghavami A, Rafiei M, Sharifi S, Faghihimani Z, et al. . Effects of zinc supplementation on inflammatory biomarkers and oxidative stress in adults: a systematic review and meta-analysis of randomized controlled trials. J Trace Ele Med Biol. (2021) 68:126857. 10.1016/j.jtemb.2021.126857 PubMed DOI
Escobedo-Monge MF, Torres-Hinojal MC, Barrado E, Escobedo-Monge MA, Marugán-Miguelsanz JM. Zinc nutritional status in a series of children with chronic diseases: a cross-sectional study. Nutrients. (2021) 13:1121. 10.3390/nu13041121 PubMed DOI PMC
Gondal AH, Zafar A, Zainab D, Toor MD, Sohail S, Ameen S, et al. . A detailed review study of zinc involvement in animal, plant and human nutrition. Ind J Pure App Biosci. (2021) 9:262–71. 10.18782/2582-2845.8652 DOI
Kury S, Kharfi M, Blouin E, Schmitt S, Bezieau S. Clinical utility gene card for: acrodermatitis enteropathica. Eur J Hum Genet. (2016) 24:3–4. 10.1038/ejhg.2015.203 PubMed DOI PMC
Kasana S, Din J, Maret W. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. J Trace Elem Med Biol. (2015) 29:47–62. 10.1016/j.jtemb.2014.10.003 PubMed DOI
Uwitonze AM, Ojeh N, Murererehe J, Atfi A, Razzaque MS. Zinc adequacy is essential for the maintenance of optimal oral health. Nutrients. (2020) 12:949. 10.3390/nu12040949 PubMed DOI PMC
Li Y, Fan D, Zhao Y, Wang M. Effects of quercetin and cinnamaldehyde on the nutrient release from beef into soup during stewing process. Lwt-Food Sci Technol. (2020) 131:109712. 10.1016/j.lwt.2020.109712 DOI
Cousins RJ. Gastrointestinal factors influencing zinc absorption and homeostasis. Int J Vitam Nutr Res. (2010) 80:243. 10.1024/0300-9831/a000030 PubMed DOI PMC
Tapiero H, Tew KD. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. (2003) 57:399–411. 10.1016/S0753-3322(03)00081-7 PubMed DOI
Baltaci AK, Mogulkoc R, Baltaci SB. The role of zinc in the endocrine system. Pak J Pharm Sci. (2019) 32:231–9. Available online at: https://www.pjps.pk/article-search/ PubMed
Pawan K, Neeraj S, Sandeep K, Ratho RK, Rajendra P. Upregulation of Slc39a10 gene expression in response to thyroid hormones in intestine and kidney. Biochim Biophys Acta. (2007) 1769:117–23. 10.1016/j.bbaexp.2006.12.005 PubMed DOI
Attia H, Al-Rasheed N, Al-Rasheed N, Faddah L. The combination of zinc and glibenclamide limits cardiovascular complications in diabetic rats via multiple mechanisms. Pak J Pharm Sci. (2015) 28:499–508. Available online at: https://www.pjps.pk/article-search/ PubMed
Avanti C, Hinrichs WL, Casini A, Eissens AC, Van Dam A, Kedrov A, et al. . The formation of oxytocin dimers is suppressed by the zinc-aspartate-oxytocin complex. J Pharm Sci. (2013) 102:1734–41. 10.1002/jps.23546 PubMed DOI
Sapkota M, Knoell DL. Essential role of zinc and zinc transporters in myeloid cell function and host defense against infection. J Immunol Res. (2018) 10:1–8. 10.1155/2018/4315140 PubMed DOI PMC
Haase H, Rink L. Zinc signals and immune function. Biofactors. (2014) 40:27–40. 10.1002/biof.1114 PubMed DOI
Dardenne M, Bach JF. Rationale for the mechanism of zinc interaction in the immune system. In: Nutrient Modulation of the Immune Response. Florida: CRC Press; (2020). p. 501–10.
Colvin RA, Lai B, Holmes WR, Lee D. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics. Metallomics. (2015) 7:1111–23. 10.1039/C5MT00084J PubMed DOI
Šimić G, Španić E, Horvat LL, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. Prog Mol Biol Transl Sci. (2019) 168:99–145. 10.1016/bs.pmbts.2019.06.003 PubMed DOI
To PK, Do MH, Cho JH, Jung C. Growth modulatory role of zinc in prostate cancer and application to cancer therapeutics. Int J Mol Sci. (2020) 21:2991. 10.3390/ijms21082991 PubMed DOI PMC
El-Mashad GM, El-Gebally ES, El-Hefnawy SM, Saad AM. Effect of zinc supplementation on serum zinc and leptin levels in children on regular hemodialysis. Menoufia Med J. (2018) 31:664. 10.4103/1110-2098.239739 DOI
Sheikh A, Shamsuzzaman S, Ahmad SM, Nasrin D, Nahar S, Alam MM, et al. . Zinc influences innate immune responses in children with enterotoxigenic Escherichia coliinduced diarrhea. J Nutr. (2010) 140:1049–56. 10.3945/jn.109.111492 PubMed DOI
Wong CP, Ho E. Zinc and its role in age-related inflammation and immune dysfunction. Mol Nutr Food Res. (2012) 56:77–87. 10.1002/mnfr.201100511 PubMed DOI
Aziz MZ, Yaseen M, Abbas T, Naveed M, Mustafa A, Hamid Y, et al. . Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. J Integ Agri. (2019) 18:1369–78. 10.1016/S2095-3119(18)62095-7 DOI
Hambidge KM, Krebs NF. Zinc deficiency: a special challenge. J Nutr. (2007) 137:1101–10. 10.1093/jn/137.4.1101 PubMed DOI
Hotz C, Brown KH. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull. (2004) 25:91–204. Available online at: https://archive.unu.edu/unupress/food/fnb25-1s-IZiNCG.pdf PubMed
Motadi SA, Mbhenyane XG, Mbhatsani HV, Mabapa NS, Mamabolo RL. Prevalence of iron and zinc deficiencies among preschool children ages 3 to 5 y in Vhembe district, Limpopo province, South Africa. Nutr. (2015) 31:452–8. 10.1016/j.nut.2014.09.016 PubMed DOI
Rahmati M, Safdarian F, Zakeri M, Zare S. The prevalence of zinc deficiency in 6-month to 12-year old children in Bandar Abbas in 2013. Elect Physician. (2017) 9:5088. 10.19082/5088 PubMed DOI PMC
Kambe T, Fukue K, Ishida R, Miyazaki S. Overview of inherited zinc deficiency in infants and children. J Nutr Sci Vitaminol. (2015) 61:S44–6. 10.3177/jnsv.61.S44 PubMed DOI
World Health Organization/Food and Agricultural Organization/International Atomic Energy Association . Trace Elements in Human Health and Nutrition. Geneva, Switzerland: World Health Organization; (1996).
WHO/FAO . Human Vitamin and Mineral Requirement. Bangkok, Thailand: (2001).
Institute of Medicine . Dietary Reference Intakes of Vitamin A, Vitamin K, Arsenic Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press; (2002).
European Food Safety Authority . Scientific opinion on dietary Reference values for zinc. EFSA panel on dietetic products, nutrition and allergies (NDA). EFSA J. (2014) 12:1–76. 10.2903/j.efsa.2014.3893 DOI
Krause VM, Solomons NW, Tucker KL, Lopez-Palacios CY, Ruz M, Kuhnlein HV. Rural-urban variation in the calcium, iron, zinc and copper content of tortillas and intake of these minerals from tortillas by women in Guatemala. Ecol Food Nutr. (1992) 28:289–97. 10.1080/03670244.1992.9991282 DOI
Pennington JAT. Bowes & Church's Food Values of Portions Commonly Used. 17th ed. Philadelphia: Lippincott; (1998).
Brown KH, Baker SK. Galvanizing action: conclusions and next steps for mainstreaming zinc interventions in public health programs. Food Nutr Bull. (2009) 30:S179–84. 10.1177/15648265090301S110 PubMed DOI
Maares M, Haase H. A guide to human zinc absorption: general overview and recent advances of in vitro intestinal models. Nutrients. (2020) 12:762. 10.3390/nu12030762 PubMed DOI PMC
Masood S, Bano A. Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena V, Maurya B, Verma J, Meena R, editors. Potassium Solubilizing Microorganisms for Sustainable Agriculture. Springer, New Delhi: (2016). p. 137–47. 10.1007/978-81-322-2776-2_10 DOI
Saravanakumar K, Jeevithan E, Chelliah R, Kathiresan K, Wen-Hui W, Oh DH, et al. . Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol. (2018) 119:1144–53. 10.1016/j.ijbiomac.2018.08.017 PubMed DOI
Akbari G. Role of zinc supplementation on ischemia/reperfusion injury in various organs. Biol Trace Ele Res. (2020) 196:1–9. 10.1007/s12011-019-01892-3 PubMed DOI
Cicenas J, Zalyte E, Rimkus A, Dapkus D, Noreika R, Urbonavicius S. JNK, p38, ERK, and SGK1 inhibitors in cancer. Cancers. (2018) 10:1. 10.3390/cancers10010001 PubMed DOI PMC
Ha JH, Yu X, Carpizo DR, Loh SN. Urea denaturation, zinc binding, and DNA binding assays of mutant p53 DNA-binding domains and full-length proteins. Bio-protocol. (2021) 11:e4188. 10.21769/BioProtoc.4188 PubMed DOI PMC
Cechová J, Coufal J, Jagelská EB, Fojta M, Brázda V. p73, like its p53 homolog, shows preference for inverted repeats forming cruciform. PloS ONE. (2018) 13:e0195835. 10.1371/journal.pone.0195835 PubMed DOI PMC
Seve M, Chimienti F, Favier A. Role of intracellular zinc in programmed cell death. Pathol Biol. (2002) 50:212–21. 10.1016/S0369-8114(02)00290-0 PubMed DOI
Clegg MS, Hanna LA, Niles BJ, Momma TY, Keen CL. Zinc deficiency-induced cell death. IUBMB Life. (2005) 57:661–9. 10.1080/15216540500264554 PubMed DOI
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, carnosine, and neurodegenerative diseases. Nutrients. (2018) 10:147. 10.3390/nu10020147 PubMed DOI PMC
Knoch ME, Hartnett KA, Hara H, Kandler K, Aizenman E. Microglia induce neurotoxicity via intraneuronal Zn2+ release and a K+ current surge. Glia. (2008) 56:89–96. 10.1002/glia.20592 PubMed DOI PMC
Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, et al. . The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res. (2010) 17:1. 10.1007/s12640-009-9067-4 PubMed DOI PMC
Qi Z, Liu KJ. The interaction of zinc and the blood-brain barrier under physiological and ischemic conditions. Toxicol App Pharma. (2019) 364:114–9. 10.1016/j.taap.2018.12.018 PubMed DOI PMC
Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. (2005) 6:449–62. 10.1038/nrn1671 PubMed DOI
Sato Y, Takiguchi M, Tamano H, Takeda A. Extracellular Zn 2+-Dependent Amyloid-β 1–42 neurotoxicity in Alzheimer's disease pathogenesis. Biol Trace Ele Res. (2021) 199:53–61. 10.1007/s12011-020-02131-w PubMed DOI
Sloviter RS. A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation. Brain Res. (1985) 330:150–3. 10.1016/0006-8993(85)90017-4 PubMed DOI
Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, et al. . Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res. (2000) 852:268–73. 10.1016/S0006-8993(99)02095-8 PubMed DOI
Park JA, Lee JY, Sato TA, Koh JY. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J Neurosci. (2000) 20:9096–103. 10.1523/JNEUROSCI.20-24-09096.2000 PubMed DOI PMC
Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH. Zn2+ induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J Biol Chem. (2001) 276:47524–9. 10.1074/jbc.M108834200 PubMed DOI
Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M, et al. . Zinc-induced neuronal death in cortical neurons. Cell Mol Biol. (2000) 46:797–806. PubMed
Krall RF, Tzounopoulos T, Aizenman E. The function and regulation of zinc in the brain. Neurosci. (2021) 457:235–58. 10.1016/j.neuroscience.2021.01.010 PubMed DOI PMC
Weiss JH, Sensi SL, Koh JY. Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci. (2000) 21:395–401. 10.1016/S0165-6147(00)01541-8 PubMed DOI
BarKalifa R, Hershfinkel M, Friedman JE, Kozak A, Sekler I. The lipophilic zinc chelator DP-b99 prevents zinc induced neuronal death. Eur J Pharmacol. (2009) 618:15–21. 10.1016/j.ejphar.2009.07.019 PubMed DOI
Devirgiliis C, Zalewski PD, Perozzi G, Murgia C. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res. (2007) 622:84–93. 10.1016/j.mrfmmm.2007.01.013 PubMed DOI
Sensi SL, Yin HZ, Carriedo SG, Rao SS, Weiss JH. Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proc Natl Acad Sci. (1999) 96:2414–9. 10.1073/pnas.96.5.2414 PubMed DOI PMC
Cruz KJC, De Oliveira ARS, Do Nascimento Marreiro D. Antioxidant role of zinc in diabetes mellitus. World J Diabetes. (2015) 6:333. 10.4239/wjd.v6.i2.333 PubMed DOI PMC
Homma K, Fujisawa T, Tsuburaya N, Yamaguchi N, Kadowaki H, Takeda K, et al. . SOD1 as a molecular switch for initiating the homeostatic ER stress response under zinc deficiency. Mol Cell. (2013) 52:75–86. 10.1016/j.molcel.2013.08.038 PubMed DOI
Choi S, Liu X, Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacologica Sinica. (2018) 39:1120–329. 10.1038/aps.2018.25 PubMed DOI PMC
Bjørklund G, Dadar M, Pivina L, Doşa MD, Semenova Y, Aaseth J. The role of zinc and copper in insulin resistance and diabetes mellitus. Curr Med Chem. (2020) 27:6643–57. 10.2174/0929867326666190902122155 PubMed DOI
Liang T, Zhang Q, Sun W, Xin Y, Zhang Z, Tan Y, et al. . Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein. Toxicol Lett. (2015) 233:114–24. 10.1016/j.toxlet.2015.01.010 PubMed DOI
Ozcelik D, Naziroglu M, Tunçdemir M, Çelik O, Ozturk M, Flores-Arce MF. Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res. (2012) 150:342–9. 10.1007/s12011-012-9508-4 PubMed DOI
Thingholm TE, Rönnstrand L, Rosenberg PA. Why and how to investigate the role of protein phosphorylation in ZIP and ZnT zinc transporter activity and regulation. Cell Mol Life Sci. (2020) 19:1–8. 10.1007/s00018-020-03473-3 PubMed DOI PMC
Kimura T, Itoh N, Andrews GK. Mechanisms of heavy metal sensing by metal response element-binding transcription factor-1. J Health Sci. (2009) 55:484–94. 10.1248/jhs.55.484 PubMed DOI
Lu Q, Haragopal H, Slepchenko KG, Stork C, Li YV. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int J Physiol Pathophysiol Pharmacol. (2016) 8:35. PubMed PMC
Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants. (2019) 8:164. 10.3390/antiox8060164 PubMed DOI PMC
Lopes-Pires ME, Ahmed NS, Vara D, Gibbins JM, Pula G, Pugh N. Zinc regulates reactive oxygen species generation in platelets. Platelets. (2021) 32:368–77. 10.1080/09537104.2020.1742311 PubMed DOI
Kalinowska M, Sienkiewicz-Gromiuk J, Swiderski G, Pietryczuk A, Cudowski A, Lewandowski W. Zn (II) complex of plant phenolic chlorogenic acid: antioxidant, antimicrobial and structural studies. Materials. (2020) 13:3745. 10.3390/ma13173745 PubMed DOI PMC
Barbato JC, Catanescu O, Murray K, DiBello PM, Jacobsen DW. Targeting of metallothionein by L-homocysteine: a novel mechanism for disruption of zinc and redox homeostasis. Arterioscler Thromb Vasc Biol. (2007) 27:49–54. 10.1161/01.ATV.0000251536.49581.8a PubMed DOI PMC
Prasad AS. Zinc is an antioxidant and anti-inflammatory agent: its role in human health. Front Nutr. (2014) 1:14. 10.3389/fnut.2014.00014 PubMed DOI PMC
Clemens S, Ma JF. Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol. (2016) 67:489–512. 10.1146/annurev-arplant-043015-112301 PubMed DOI
World Health Organization . Guidelines on food fortification with micronutrients. Geneva: (2006).
Louise HD, Villamor E. Zinc supplementation in children is not associated with decreases in hemoglobin concentrations. J Nutr. (2010) 140:1035–40. 10.3945/jn.109.119305 PubMed DOI
Santos HO, Teixeira FJ, Schoenfeld BJ. Dietary vs. pharmacological doses of zinc: a clinical review. Clinic Nut. (2020) 39:1345–53. 10.1016/j.clnu.2019.06.024 PubMed DOI
Scrimgeour AG, Condlin ML, Otieno L, Bovill ME. Zinc intervention strategies: Costs and health benefits. In Nutrients, Dietary Supplements, and Nutriceuticals. New Jersey: Humana Press. (2011) p. 189–214. 10.1007/978-1-60761-308-4_13 DOI
Scrimgeour AG, Condlin ML. Zinc and micronutrient combinations to combat gastrointestinal inflammation. Curr Opin Clin Nutr Metab Care. (2009) 12:653–60. 10.1097/MCO.0b013e3283308dd6 PubMed DOI
Patel A, Mamtani M, Dibley MJ, Badhoniya N, Kulkarni H. Therapeutic value of zinc supplementation in acute and persistent diarrhea: a systematic review. PLoS ONE. (2010) 5:e10386. 10.1371/journal.pone.0010386 PubMed DOI PMC
Vaclavik L, Vaclavikova M, Begley TH, Krynitsky AJ, Rader JI. Determination of multiple mycotoxins in dietary supplements containing green coffee bean extracts using ultrahigh-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). J Agri Food Chem. (2013) 61:4822–830. 10.1021/jf401139u PubMed DOI
Martínez-Domínguez G, Romero-González R, Arrebola FJ, Frenich AG. Multi-class determination of pesticides and mycotoxins in isoflavones supplements obtained from soy by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Con. (2016) 59:218–24. 10.1016/j.foodcont.2015.05.033 PubMed DOI
Narváez A, Rodríguez-Carrasco Y, Castaldo L, Izzo L, Ritieni A. Ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry for multi-residue analysis of mycotoxins and pesticides in botanical nutraceuticals. Toxins. (2020) 2:114. 10.3390/toxins12020114 PubMed DOI PMC
Hidalgo-Ruiz JL, Romero-González R, Vidal JL, Frenich AG. A rapid method for the determination of mycotoxins in edible vegetable oils by ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Chem. (2019) 288:22–8. 10.1016/j.foodchem.2019.03.003 PubMed DOI
Martínez-Domínguez G, Romero-González R, Frenich AG. Multi-class methodology to determine pesticides and mycotoxins in green tea and royal jelly supplements by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Food Chem. (2016) 197:907–15. 10.1016/j.foodchem.2015.11.070 PubMed DOI
Bhatt R, Hossain A, Sharma P. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: a review. Open Agri. (2020) 5:176–87. 10.1515/opag-2020-0018 DOI
Li C, Wang P, Lombi E, Cheng M, Tang C, Howard DL, et al. . Absorption of foliar-applied Zn fertilizers by trichomes in soybean and tomato. J Exp Bot. (2018) 69:2717–2129. 10.1093/jxb/ery085 PubMed DOI PMC
Ramzan Y, Hafeez MB, Khan S, Nadeem M, Batool S, Ahmad J. Biofortification with Zinc and Iron Improves the Grain Quality and Yield of Wheat Crop. Int J Plant Prod. (2020) 14. 10.1007/s42106-020-00100-w PubMed DOI
Mirbolook A, Lakzian A, Rasouli Sadaghiani M, Sepehr E, Hakimi M. Fortification of bread wheat using synthesized Zn-Glycine and Zn-Alanine chelates in comparison with ZnSO4 in a calcareous soil. Comm Soil Sci Plant Ana. (2020) 51:1048–64. 10.1080/00103624.2020.1744635 DOI
Hussain A, Zahir ZA, Asghar HN, Ahmad M, Jamil M, Naveed M, et al. . Zinc solubilizing bacteria for zinc biofortification in cereals: a step toward sustainable nutritional security. In: Role of Rhizospheric Microbes in Soil. Singapore: Springer; (2018). p. 203–27. 10.1007/978-981-13-0044-8_7 DOI
Zeb H, Hussain A, Naveed M, Ditta A, Ahmad S, Jamshaid MU, et al. . Compost enriched with ZnO and Zn-solubilising bacteria improves yield and Zn-fortification in flooded rice. Ita J Agron. (2018) 13:310–6. 10.4081/ija.2018.1295 DOI
Hussain A, Zahir ZA, Ditta A, Tahir MU, Ahmad M, Mumtaz MU, et al. . Production and implication of bio-activated organic fertilizer enriched with zinc-solubilizing bacteria to boost up maize (Zea mays L) production and biofortification under two cropping seasons. Agronomy. (2020) 10:39. 10.3390/agronomy10010039 DOI
Riaz A, Akhtar N, Javed H, Ali M, Akhtar S, Qureshi MA. Microbes mediated zinc biofortification for promoting growth and yield of wheat. J Agric Res. (2021) 59:35–42.