p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29668749
PubMed Central
PMC5905954
DOI
10.1371/journal.pone.0195835
PII: PONE-D-18-01804
Knihovny.cz E-zdroje
- MeSH
- aktivace transkripce MeSH
- konformace nukleové kyseliny MeSH
- kvasinky genetika metabolismus MeSH
- lidé MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- obrácené repetice * MeSH
- protein p73 chemie genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- vazba proteinů MeSH
- vazebná místa * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- protein p73 MeSH
p73 is a member of the p53 protein family and has essential functions in several signaling pathways involved in development, differentiation, DNA damage responses and cancer. As a transcription factor, p73 achieves these functions by binding to consensus DNA sequences and p73 shares at least partial target DNA binding sequence specificity with p53. Transcriptional activation by p73 has been demonstrated for more than fifty p53 targets in yeast and/or human cancer cell lines. It has also been shown previously that p53 binding to DNA is strongly dependent on DNA topology and the presence of inverted repeats that can form DNA cruciforms, but whether p73 transcriptional activity has similar dependence has not been investigated. Therefore, we evaluated p73 binding to a set of p53-response elements with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures. We show by a yeast-based assay that transactivation in vivo correlated more with the relative propensity of a response element to form cruciforms than to its expected in vitro DNA binding affinity. Structural features of p73 target sites are therefore likely to be an important determinant of its transactivation function.
Department of Biochemistry Faculty of Science Masaryk University Kotlarska Brno Czech Republic
The Czech Academy of Sciences Institute of Biophysics Královopolská Brno Czech Republic
Zobrazit více v PubMed
Jost CA, Marin MC, Kaelin WG. p73 is a human p53-related protein that can induce apoptosis. Nature. 1997;389: 191–194. doi: 10.1038/38298 PubMed DOI
Tozluoǧlu M, Karaca E, Haliloglu T, Nussinov R. Cataloging and organizing p73 interactions in cell cycle arrest and apoptosis. Nucleic Acids Res. 2008;36: 5033–5049. doi: 10.1093/nar/gkn481 PubMed DOI PMC
DeYoung MP, Ellisen LW. p63 and p73 in human cancer: Defining the network. Oncogene. 2007. pp. 5169–5183. doi: 10.1038/sj.onc.1210337 PubMed DOI
Ichimiya S, Nimura Y, Kageyama H, Takada N, Sunahara M, Shishikura T, et al. Genetic analysis of p73 localized at chromosome 1p36.3 in primary neuroblastomas. Med Pediatr Oncol. 2001;36: 42–44. doi: 10.1002/1096-911X(20010101)36:1<42::AID-MPO1011>3.0.CO;2-K PubMed DOI
Van Doorn R, Zoutman WH, Dijkman R, De Menezes RX, Commandeur S, Mulder AA, et al. Epigenetic profiling of cutaneous T-cell lymphoma: Promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol. 2005;23: 3886–3896. doi: 10.1200/JCO.2005.11.353 PubMed DOI
Rufini A, Agostini M, Grespi F, Tomasini R, Sayan BS, Niklison-Chirou MV, et al. P73 in cancer. Genes Cancer. 2011;2: 491–502. doi: 10.1177/1947601911408890 PubMed DOI PMC
Moll UM, Slade N. P63 and P73: Roles in Development and Tumor Formation. Mol Cancer Res. 2004;2: 371–86. doi:2/7/371 [pii] PubMed
Dominguez G, Silva JM, Silva JM, Garcia JM, Sanchez A, Navarro A, et al. Wild type p73 overexpression and high-grade malignancy in breast cancer. Breast Cancer Res Treat. 2001;66: 183–190. doi: 10.1023/A:1010624717311 PubMed DOI
Zaika AI, Kovalev S, Marchenko ND, Moll UM. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res. 1999;59: 3257–63. Available: http://www.ncbi.nlm.nih.gov/pubmed/10397274 PubMed
Orzol P, Holcakova J, Nekulova M, Nenutil R, Vojtesek B, Coates PJ. The diverse oncogenic and tumour suppressor roles of p63 and p73 in cancer: A review by cancer site. Histol Histopathol. 2015;30: 503–521. doi: 10.14670/HH-30.503 PubMed DOI
Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci. 2000;1670: 1661–70. doi:10769197 PubMed
Brandt T, Petrovich M, Joerger AC, Veprintsev DB. Conservation of DNA-binding specificity and oligomerisation properties within the p53 family. BMC Genomics. 2009;10: 628 doi: 10.1186/1471-2164-10-628 PubMed DOI PMC
Nakagawa T, Takahashi M, Ozaki T, Watanabe Ki K, Todo S, Mizuguchi H, et al. Autoinhibitory regulation of p73 by Delta Np73 to modulate cell survival and death through a p73-specific target element within the Delta Np73 promoter. Mol Cell Biol. 2002;22: 2575–2585. doi: 10.1128/MCB.22.8.2575-2585.2002 PubMed DOI PMC
Sasaki Y, Ishida S, Morimoto I, Yamashita T, Kojima T, Kihara C, et al. The p53 family member genes are involved in the Notch signal pathway. J Biol Chem. 2002;277: 719–24. doi: 10.1074/jbc.M108080200 PubMed DOI
Ozaki T, Naka M, Takada N, Tada M, Sakiyama S, Nakagawara A. Deletion of the COOH-terminal region of p73α enhances both its transactivation function and DNA-binding activity but inhibits induction of apoptosis in mammalian cells. Cancer Res. 1999;59: 5902–5907. PubMed
Stiewe T, Theseling CC, Pützer BM. Transactivation-deficient ΔTA-p73 Inhibits p53 by Direct Competition for DNA Binding. J Biol Chem. 2002;277: 14177–14185. doi: 10.1074/jbc.M200480200 PubMed DOI
Lokshin M, Li Y, Gaiddon C, Prives C. p53 and p73 display common and distinct requirements for sequence specific binding to DNA. Nucleic Acids Res. 2007;35: 340–352. doi: 10.1093/nar/gkl1047 PubMed DOI PMC
Espinosa JM. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene. 2008. pp. 4013–4023. doi: 10.1038/onc.2008.37 PubMed DOI PMC
Menendez D, Inga A, Resnick MA. The expanding universe of p53 targets. Nat Rev Cancer. 2009/09/25. 2009;9: 724–737. doi: 10.1038/nrc2730 PubMed DOI
el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus binding site for p53. Nat Genet. 1992;1: 45–49. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1301998 doi: 10.1038/ng0492-45 PubMed DOI
Veprintsev DB, Fersht AR. Algorithm for prediction of tumour suppressor p53 affinity for binding sites in DNA. Nucleic Acids Res. 2008/02/01. 2008;36: 1589–1598. doi: 10.1093/nar/gkm1040 PubMed DOI PMC
Palecek E, Vlk D, Stanková V, Brázda V, Vojtesek B, Hupp TR, et al. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997/12/11. 1997;15: 2201–9. doi: 10.1038/sj.onc.1201398 PubMed DOI
Brázda V, Palecek J, Pospisilová Š, Vojtesek B, Palecek E. Specific modulation of p53 binding to consensus sequence within supercoiled DNA by monoclonal antibodies. Biochem Biophys Res Commun. 2000/02/16. 2000;267: 934–939. doi: 10.1006/bbrc.1999.2056 PubMed DOI
Jagelská EB, Brázda V, Pečinka P, Paleček E, Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem J. 2008/02/15. 2008;412: 57–63. doi: 10.1042/BJ20071648 PubMed DOI
Brázda V, Coufal J. Recognition of local DNA structures by p53 protein. Int J Mol Sci.; 2017;18: 375 doi: 10.3390/ijms18020375 PubMed DOI PMC
Paleček E, Brázda V, Jagelská E, Pečinka P, Karlovská L, Brázdová M. Enhancement of p53 sequence-specific binding by DNA supercoiling. Oncogene. 2004/02/03. 2004;23: 2119–2127. doi: 10.1038/sj.onc.1207324 PubMed DOI
Jagelská EB, Pivoňková H, Fojta M, Brázda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochem Biophys Res Commun. 2009/12/23. 2010;391: 1409–1414. doi: 10.1016/j.bbrc.2009.12.076 PubMed DOI
Brázda V, Čechová J, Battistin M, Coufal J, Jagelská EB, Raimondi I, et al. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein. Biochem Biophys Res Commun. 2016/12/23. 2017;483: 516–521. doi: 10.1016/j.bbrc.2016.12.113 PubMed DOI
Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol. 2011/08/06. 2011;12: 33 doi: 10.1186/1471-2199-12-33 PubMed DOI PMC
Čechová J, Lýsek J, Bartas M, Brázda V. Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability. Bioinformatics. 2017; doi: 10.1093/bioinformatics/btx729 PubMed DOI PMC
Ethayathulla AS, Tse P-W, Monti P, Nguyen S, Inga A, Fronza G, et al. Structure of p73 DNA-binding domain tetramer modulates p73 transactivation. Proc Natl Acad Sci. 2012;109: 6066–6071. doi: 10.1073/pnas.1115463109 PubMed DOI PMC
Ho WC, Fitzgerald MX, Marmorstein R. Structure of the p53 core domain dimer bound to DNA. J Biol Chem. 2006;281: 20494–20502. doi: 10.1074/jbc.M603634200 PubMed DOI
Chen Y, Dey R, Chen L. Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self-Assembled Tetramer. Structure. 2010;18: 246–256. doi: 10.1016/j.str.2009.11.011 PubMed DOI PMC
Ciribilli Y, Monti P, Bisio A, Nguyen HT, Ethayathulla AS, Ramos A, et al. Transactivation specificity is conserved among p53 family proteins and depends on a response element sequence code. Nucleic Acids Res. 2013;41: 8637–8653. doi: 10.1093/nar/gkt657 PubMed DOI PMC
Inga A, Storici F, Darden TA, Resnick MA. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol Cel Biol. 2002;22: 8612–8625. Available: http://www.ncbi.nlm.nih.gov/pubmed/12446780 PubMed PMC
Lion M, Raimondi I, Donati S, Jousson O, Ciribilli Y, Inga A. Evolution of p53 Transactivation Specificity through the Lens of a Yeast-Based Functional Assay. PLoS One. 2015;10. UNSP e011617710.1371/journal.pone.0116177 PubMed PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31: 3406–3415. doi: 10.1093/nar/gkg595 PubMed DOI PMC
Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št’astný J. Palindrome analyser–A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun. 2016;478: 1739–1745. doi: 10.1016/j.bbrc.2016.09.015 PubMed DOI
Bisso A, Collavin L, Del Sal G. p73 as a Pharmaceutical Target for Cancer Therapy. Curr Pharm Des. 2011;17: 578–590. doi: 10.2174/138161211795222667 PubMed DOI PMC
Harms KL, Chen X. The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Diff. 2006. pp. 890–897. doi: 10.1038/sj.cdd.4401904 PubMed DOI
Tichý V, Navrátilová L, Adámik M, Fojta M, Brázdová M. Redox state of p63 and p73 core domains regulates sequence-specific DNA binding. Biochem Biophys Res Commun. 2013;433: 445–449. doi: 10.1016/j.bbrc.2013.02.097 PubMed DOI
Adámik M, Bažantová P, Navrátilová L, Polášková A, Pečinka P, Holaňová L, et al. Impact of cadmium, cobalt and nickel on sequence-specific DNA binding of p63 and p73 in vitro and in cells. Biochem Biophys Res Commun. 2015;456: 29–34. doi: 10.1016/j.bbrc.2014.11.027 PubMed DOI
Sauer M, Bretz AC, Beinoraviciute-Kellner R, Beitzinger M, Burek C, Rosenwald A, et al. C-terminal diversity within the p53 family accounts for differences in DNA binding and transcriptional activity. Nucleic Acids Res. 2008;36: 1900–1912. doi: 10.1093/nar/gkn044 PubMed DOI PMC
Petitjean A, Ruptier C, Tribollet V, Hautefeuille A, Chardon F, Cavard C, et al. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with Delta Np73. Carcinogenesis. 2008;29: 273–281. doi: 10.1093/carcin/bgm258 PubMed DOI
Ramos A, Tse P-W, Wang J, Ethayathulla AS, Viadiu H. Sequence Variation in the Response Element Determines Binding by the Transcription Factor p73. Biochemistry. 2015;54: 6961–6972. doi: 10.1021/acs.biochem.5b00152 PubMed DOI
Marin MC, Jost CA, Brooks LA, Irwin MS, O’Nions J, Tidy JA, et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet. 2000;25: 47–54. doi: 10.1038/75586 PubMed DOI
Brazda V, Muller P, Brozkova K, Vojtesek B. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity. Biochem Biophys Res Commun. 2006;351: 499–506. doi: 10.1016/j.bbrc.2006.10.065 PubMed DOI
Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol. 2009;10;243–254. doi: 10.1038/nrm2651 PubMed DOI PMC
Todolli S, Perez PJ, Clauvelin N, Olson WK. Contributions of Sequence to the Higher-Order Structures of DNA. Biophy J; 2017; 112; 416–426. doi: 10.1016/j.bpj.2016.11.017 PubMed DOI PMC
Brázda V, Coufal J, Liao JCC, Arrowsmith CH. Preferential binding of IFI16 protein to cruciform structure and superhelical DNA. Biochem Biophys Res Commun. 2012;422: 716–720. doi: 10.1016/j.bbrc.2012.05.065 PubMed DOI
Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids
Mechanistic Impact of Zinc Deficiency in Human Development
Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure