Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29126205
PubMed Central
PMC6030915
DOI
10.1093/bioinformatics/btx729
PII: 4604597
Knihovny.cz E-zdroje
- MeSH
- Eukaryota genetika MeSH
- genom mitochondriální * MeSH
- genomika * MeSH
- molekulární evoluce * MeSH
- obrácené repetice * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MOTIVATION: The NCBI database contains mitochondrial DNA (mtDNA) genomes from numerous species. We investigated the presence and locations of inverted repeat sequences (IRs) in these mtDNA sequences, which are known to be important for regulating nuclear genomes. RESULTS: IRs were identified in mtDNA in all species. IR lengths and frequencies correlate with evolutionary age and the greatest variability was detected in subgroups of plants and fungi and the lowest variability in mammals. IR presence is non-random and evolutionary favoured. The frequency of IRs generally decreased with IR length, but not for IRs 24 or 30 bp long, which are 1.5 times more abundant. IRs are enriched in sequences from the replication origin, followed by D-loop, stem-loop and miscellaneous sequences, pointing to the importance of IRs in regulatory regions of mitochondrial DNA. AVAILABILITY AND IMPLEMENTATION: Data were produced using Palindrome analyser, freely available on the web at http://bioinformatics.ibp.cz. CONTACT: vaclav@ibp.cz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Zobrazit více v PubMed
Archibald J.M. (2015) Endosymbiosis and eukaryotic cell evolution. Curr. Biol., 25, R911–R921. PubMed
Barr C.M. et al. (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol., 168, 39–50. PubMed
Basu T. et al. (2016) Organelle genetic diversity in a global collection of Jute (Corchorus capsularis and C. olitorius, Malvaceae). South African J. Bot., 103, 54–60.
Bikard D. et al. (2010) Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol. Mol. Biol. Rev., 74, 570–588. PubMed PMC
Boore J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Res., 27, 1767–1780. PubMed PMC
Brand M.D. (1997) Regulation analysis of energy metabolism. J. Exp. Biol., 200, 193–202. PubMed
Brazda V. et al. (2016) Palindrome analyser – a new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem. Biophys. Res. Commun., 478, 1739–1745. PubMed
Brazda V. et al. (2012) Superhelical DNA as a preferential binding target of 14-3-3gamma protein. J. Biomol. Struct. Dyn., 30, 371–378. PubMed
Brazda V. et al. (2017) The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein. Biochem. Biophys. Res. Commun., 483, 516–521. PubMed
Brázda V. et al. (2011) Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol., 12, 33. PubMed PMC
Brazda V., Coufal J. (2017) Recognition of Local DNA Structures by p53 Protein. Int. J. Mol. Sci., 18, PubMed PMC
Cer R.Z. et al. (2012) Searching for non-B DNA-forming motifs using nBMST (non-B DNA motif search tool). Curr. Protoc. Hum. Genet., 18, 1–22. PubMed PMC
Chasovskikh S. et al. (2005) DNA transitions induced by binding of PARP-1 to cruciform structures in supercoiled plasmids. Cytometry A, 68, 21–27. PubMed
Federhen S. (2011) The NCBI taxonomy database. Nucleic Acids Res., 40, D136–D143. PubMed PMC
Gualberto J.M. et al. (2014) The plant mitochondrial genome: dynamics and maintenance. Biochimie, 100, 107–120. PubMed
Jain K. et al. (2015) Extreme features of the Galdieria sulphuraria organellar genomes: a consequence of polyextremophily? Genome Biol. Evol., 7, 367–380. PubMed PMC
Kauppila T.E.S. et al. (2017) Mammalian mitochondria and aging: an update. Cell. Metab., 25, 57–71. PubMed
Kroemer G. et al. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol., 60, 619–642. PubMed
Letunic I., Bork P. (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res., 44, W242–W245. PubMed PMC
López-García P. et al. (2017) Symbiosis in eukaryotic evolution. J. Theor. Biol, 434, 20–33. PubMed PMC
Martin W.F. et al. (2015) Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. B Biol. Sci., 370, 20140330. PubMed PMC
Mikheikin A.L. et al. (2006) Effect of DNA supercoiling on the geometry of holliday junctions. Biochemistry, 45, 12998–13006. PubMed PMC
Paleček E. (1991) Local supercoil-stabilized DNA structures. Mol. Biol., 26, 151–226. PubMed
Panayotatos N., Fontaine A. (1987) A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. J. Biol. Chem., 262, 11364–11368. PubMed
Pozzi L. et al. (2014) Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol., 75, 165–183. PubMed PMC
R Core Team. (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria: http://www.R-project.org/; https://stat.ethz.ch/pipermail/r-help/2014-October/422975.html.
Shlyakhtenko L.S. et al. (2000) A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J. Mol. Biol., 296, 1169–1173. PubMed
Sievert C. et al. (2016) Plotly: Create Interactive Web Graphics via’plotly. js’ R package version 3.6.0. https://cran.r-project.org/web/packages/plotly/.
Srinivasan S. et al. (2017) Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochim. Biophys. Acta - Bioenerg., 1858, 602–614. PubMed PMC
Wei Y.H. et al. (2001) Mitochondrial theory of aging matures – roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi (Taipei), 64, 259–270. PubMed
Wickham H. (2016) ggplot2: Elegant Graphics for Data Analysis. Springer, Berlin, Germany.
Yamaguchi K., Yamaguchi M. (1984) The replication origin of pSC101: the nucleotide sequence and replication functions of the ori region. Gene, 29, 211–219. PubMed
Variability of Inverted Repeats in All Available Genomes of Bacteria
Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids
G-Quadruplexes in the Archaea Domain
Structures and stability of simple DNA repeats from bacteria
The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria
Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs
p73, like its p53 homolog, shows preference for inverted repeats forming cruciforms