Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs

. 2018 ; 2018 () : 1097018. [epub] 20180724

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30140690

Chloroplasts are key organelles in the management of oxygen in algae and plants and are therefore crucial for all living beings that consume oxygen. Chloroplasts typically contain a circular DNA molecule with nucleus-independent replication and heredity. Using "palindrome analyser" we performed complete analyses of short inverted repeats (S-IRs) in all chloroplast DNAs (cpDNAs) available from the NCBI genome database. Our results provide basic parameters of cpDNAs including comparative information on localization, frequency, and differences in S-IR presence. In a total of 2,565 cpDNA sequences available, the average frequency of S-IRs in cpDNA genomes is 45 S-IRs/per kbp, significantly higher than that found in mitochondrial DNA sequences. The frequency of S-IRs in cpDNAs generally decreased with S-IR length, but not for S-IRs 15, 22, 24, or 27 bp long, which are significantly more abundant than S-IRs with other lengths. These results point to the importance of specific S-IRs in cpDNA genomes. Moreover, comparison by Levenshtein distance of S-IR similarities showed that a limited number of S-IR sequences are shared in the majority of cpDNAs. S-IRs are not located randomly in cpDNAs, but are length-dependently enriched in specific locations, including the repeat region, stem, introns, and tRNA regions. The highest enrichment was found for 12 bp and longer S-IRs in the stem-loop region followed by 12 bp and longer S-IRs located before the repeat region. On the other hand, S-IRs are relatively rare in rRNA sequences and around introns. These data show nonrandom and conserved arrangements of S-IRs in chloroplast genomes.

Zobrazit více v PubMed

Gordenin D. A., Lobachev K. S., Degtyareva N. P., Malkova A. L., Perkins E., Resnick M. A. Inverted DNA repeats: A source of eukaryotic genomic instability. Molecular and Cellular Biology. 1993;13(9):5315–5322. doi: 10.1128/MCB.13.9.5315. PubMed DOI PMC

Pearson C. E., Zorbas H., Price G. B., Zannis-Hadjopoulos M. Inverted repeats, stem-loops, and cruciforms: Significance for initiation of DNA replication. Journal of Cellular Biochemistry. 1996;63(1):1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.3.CO;2-P. PubMed DOI

Brázda V., Laister R. C., Jagelská E. B., Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Molecular Biology. 2011;12, article 33 doi: 10.1186/1471-2199-12-33. PubMed DOI PMC

Horwttz M. S. Z., Loeb L. A. An E. coli promoter that regulates transcription by DNA superhelix-induced cruciform extrusion. Science. 1988;241(4866):703–705. doi: 10.1126/science.2456617. PubMed DOI

Bradley A. S., Baharoglu Z., Niewiarowski A., Michel B., Tsaneva I. R. Formation of a stable RuvA protein double tetramer is required for efficient branch migration in vitro and for replication fork reversal in vivo. The Journal of Biological Chemistry. 2011;286(25):22372–22383. doi: 10.1074/jbc.M111.233908. PubMed DOI PMC

Zannis-Hadjopoulos M., Yahyaoui W., Callejo M. 14-3-3 Cruciform-binding proteins as regulators of eukaryotic DNA replication. Trends in Biochemical Sciences. 2008;33(1):44–50. doi: 10.1016/j.tibs.2007.09.012. PubMed DOI

Jagelská E. B., Pivoňková H., Fojta M., Brázda V. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets. Biochemical and Biophysical Research Communications. 2010;391(3):1409–1414. doi: 10.1016/j.bbrc.2009.12.076. PubMed DOI

Brázda V., Čechová J., Battistin M., et al. The structure formed by inverted repeats in p53 response elements determines the transactivation activity of p53 protein. Biochemical and Biophysical Research Communications. 2017;483(1):516–521. doi: 10.1016/j.bbrc.2016.12.113. PubMed DOI

Bracale M., Galli M. G., Savini C., Bianchi M. E. Specific interaction of plant HMG-like proteins with cruciform DNA. Journal of Experimental Botany. 1994;45(10):1493–1496. doi: 10.1093/jxb/45.10.1493. DOI

Weng M.-L., Blazier J. C., Govindu M., Jansen R. K. Reconstruction of the ancestral plastid genome in geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Molecular Biology and Evolution. 2014;31(3):645–659. doi: 10.1093/molbev/mst257. PubMed DOI

Yi X., Gao L., Wang B., Su Y.-J., Wang T. The complete chloroplast genome sequence of cephalotaxus oliveri (cephalotaxaceae): Evolutionary comparison of cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms. Genome Biology and Evolution. 2013;5(4):688–698. doi: 10.1093/gbe/evt042. PubMed DOI PMC

Čechová J., Lýsek J., Bartas M., Brázda V. Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability. Bioinformatics. 2018;34(7):1081–1085. doi: 10.1093/bioinformatics/btx729. PubMed DOI PMC

Jensen P. E., Leister D. Chloroplast evolution, structure and functions. F1000Prime Reports. 2014;6 PubMed PMC

Nowack E. C. M., Melkonian M., Glöckner G. Chromatophore Genome Sequence of Paulinella Sheds Light on Acquisition of Photosynthesis by Eukaryotes. Current Biology. 2008;18(6):410–418. doi: 10.1016/j.cub.2008.02.051. PubMed DOI

Archibald J. M. The Puzzle of Plastid Evolution. Current Biology. 2009;19(2):R81–R88. doi: 10.1016/j.cub.2008.11.067. PubMed DOI

Henry D., Choun-Sea L., Ming Y., Wan-Jung C. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology. 2016;17, article 134 doi: 10.1186/s13059-016-1004-2. PubMed DOI PMC

Xu J.-H., Liu Q., Hu W., Wang T., Xue Q., Messing J. Dynamics of chloroplast genomes in green plants. Genomics. 2015;106(4):221–231. doi: 10.1016/j.ygeno.2015.07.004. PubMed DOI

Wolfe K. H., Li W. H., Sharp P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Acadamy of Sciences of the United States of America. 1987;84(24):9054–9058. doi: 10.1073/pnas.84.24.9054. PubMed DOI PMC

Turmel M., Otis C., Lemieux C. Divergent copies of the large inverted repeat in the chloroplast genomes of ulvophycean green algae. Scientific Reports. 2017;7(1) PubMed PMC

Wicke S., Müller K. F., de Pamphilis C. W., et al. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. The Plant Cell. 2013;25(10):3711–3725. doi: 10.1105/tpc.113.113373. PubMed DOI PMC

Lavin M., Doyle J. J., Palmer J. D. Evolutionary Significance of the Loss of the Chloroplast-DNA Inverted Repeat in the Leguminosae Subfamily Papilionoideae. Evolution. 1990;44(2):p. 390. doi: 10.2307/2409416. PubMed DOI

Zhu A., Guo W., Gupta S., Fan W., Mower J. P. Evolutionary dynamics of the plastid inverted repeat: The effects of expansion, contraction, and loss on substitution rates. New Phytologist. 2016;209(4):1747–1756. doi: 10.1111/nph.13743. PubMed DOI

Palmer J. D., Thompson W. F. Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell. 1982;29(2):537–550. doi: 10.1016/0092-8674(82)90170-2. PubMed DOI

Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J. Palindrome analyser – A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochemical and Biophysical Research Communications. 2016;478(4):1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI

Navarro G. A guided tour to approximate string matching. ACM Computing Surveys. 2001;33(1):31–88. doi: 10.1145/375360.375365. DOI

Federhen S. The NCBI Taxonomy database. Nucleic Acids Research. 2012;40(1):D136–D143. doi: 10.1093/nar/gkr1178. PubMed DOI PMC

Letunic I., Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research. 2016;44(1):W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC

Wickham H. ggplot2: elegant graphics for data analysis. Springer; 2016.

Sievert C., Parmer C., Hocking T., et al. plotly: Create Interactive Web Graphics via plotly.js. 2016.

Moore M. J., Soltis P. S., Bell C. D., Burleigh J. G., Soltis D. E. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proceedings of the National Acadamy of Sciences of the United States of America. 2010;107(10):4623–4628. doi: 10.1073/pnas.0907801107. PubMed DOI PMC

Muñoz-Gómez S. A., Mejía-Franco F. G., Durnin K., et al. The New Red Algal Subphylum Proteorhodophytina Comprises the Largest and Most Divergent Plastid Genomes Known. Current Biology. 2017;27(11):1677–1684.e4. doi: 10.1016/j.cub.2017.04.054. PubMed DOI

Salomaki E. D., Nickles K. R., Lane C. E. The ghost plastid of Choreocolax polysiphoniae. Journal of Phycology. 2015;51(2):217–221. doi: 10.1111/jpy.12283. PubMed DOI

Lim L., McFadden G. I. The evolution, metabolism and functions of the apicoplast. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010;365(1541):749–763. doi: 10.1098/rstb.2009.0273. PubMed DOI PMC

Ma J., Yang B., Zhu W., Sun L., Tian J., Wang X. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene. 2013;528(2):120–131. doi: 10.1016/j.gene.2013.07.037. PubMed DOI

Ueda M., Nishikawa T., Fujimoto M., et al. Substitution of the gene for chloroplast RPS16 was assisted by generation of a dual targeting signal. Molecular Biology and Evolution. 2008;25(8):1566–1575. doi: 10.1093/molbev/msn102. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...