Variability of Inverted Repeats in All Available Genomes of Bacteria

. 2023 Aug 17 ; 11 (4) : e0164823. [epub] 20230626

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37358458

Noncanonical secondary structures in nucleic acids have been studied intensively in recent years. Important biological roles of cruciform structures formed by inverted repeats (IRs) have been demonstrated in diverse organisms, including humans. Using Palindrome analyser, we analyzed IRs in all accessible bacterial genome sequences to determine their frequencies, lengths, and localizations. IR sequences were identified in all species, but their frequencies differed significantly across various evolutionary groups. We detected 242,373,717 IRs in all 1,565 bacterial genomes. The highest mean IR frequency was detected in the Tenericutes (61.89 IRs/kbp) and the lowest mean frequency was found in the Alphaproteobacteria (27.08 IRs/kbp). IRs were abundant near genes and around regulatory, tRNA, transfer-messenger RNA (tmRNA), and rRNA regions, pointing to the importance of IRs in such basic cellular processes as genome maintenance, DNA replication, and transcription. Moreover, we found that organisms with high IR frequencies were more likely to be endosymbiotic, antibiotic producing, or pathogenic. On the other hand, those with low IR frequencies were far more likely to be thermophilic. This first comprehensive analysis of IRs in all available bacterial genomes demonstrates their genomic ubiquity, nonrandom distribution, and enrichment in genomic regulatory regions. IMPORTANCE Our manuscript reports for the first time a complete analysis of inverted repeats in all fully sequenced bacterial genomes. Thanks to the availability of unique computational resources, we were able to statistically evaluate the presence and localization of these important regulatory sequences in bacterial genomes. This work revealed a strong abundance of these sequences in regulatory regions and provides researchers with a valuable tool for their manipulation.

Zobrazit více v PubMed

Castelle CJ, Banfield JF. 2018. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172:1181–1197. doi:10.1016/j.cell.2018.02.016. PubMed DOI

Bowater RP, Chen D, Lilley DM. 1994. Elevated unconstrained supercoiling of plasmid DNA generated by transcription and translation of the tetracycline resistance gene in Eubacteria. Biochemistry 33:9266–9275. doi:10.1021/bi00197a030. PubMed DOI

Hatfield GW, Benham CJ. 2002. DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet 36:175–203. doi:10.1146/annurev.genet.36.032902.111815. PubMed DOI

Watson JD, Crick FH. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738. doi:10.1038/171737a0. PubMed DOI

Poggi L, Richard G-F. 2020. Alternative DNA structures in vivo: molecular evidence and remaining questions. Microbiol Mol Biol Rev 85:e00110-20. doi:10.1128/MMBR.00110-20. PubMed DOI PMC

Brázda V, Laister RC, Jagelská EB, Arrowsmith C. 2011. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol 12:33. doi:10.1186/1471-2199-12-33. PubMed DOI PMC

Bowater RP, Bohálová N, Brázda V. 2022. Interaction of proteins with inverted repeats and cruciform structures in nucleic acids. Int J Mol Sci 23:6171. doi:10.3390/ijms23116171. PubMed DOI PMC

Herbert A. 2019. Z-DNA and Z-RNA in human disease. Commun Biol 2:7. doi:10.1038/s42003-018-0237-x. PubMed DOI PMC

Frank-Kamenetskii MD, Mirkin SM. 1995. Triplex DNA structures. Annu Rev Biochem 64:65–95. doi:10.1146/annurev.bi.64.070195.000433. PubMed DOI

Vasquez KM, Glazer PM. 2002. Triplex-forming oligonucleotides: principles and applications. Q Rev Biophys 35:89–107. doi:10.1017/s0033583502003773. PubMed DOI

Sinden RR, Pytlos-Sinden MJ, Potaman VN. 2007. Slipped strand DNA structures. Front Biosci 12:4788–4799. doi:10.2741/2427. PubMed DOI

Agarwala P, Pandey S, Maiti S. 2015. The tale of RNA G-quadruplex. Org Biomol Chem 13:5570–5585. doi:10.1039/c4ob02681k. PubMed DOI

Robinson J, Raguseo F, Nuccio SP, Liano D, Di Antonio M. 2021. DNA G-quadruplex structures: more than simple roadblocks to transcription? Nucleic Acids Res 49:8419–8431. doi:10.1093/nar/gkab609. PubMed DOI PMC

Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, Wells RD. 1999. Sticky DNA: self-association properties of long GAA·TTC Repeats in R R·Y triplex structures from Friedreich’s ataxia. Mol Cell 3:465–475. doi:10.1016/s1097-2765(00)80474-8. PubMed DOI

Vetcher AA, Napierala M, Wells RD. 2002. Sticky DNA: effect of the polypurine·polypyrimidine sequence. J Biol Chem 277:39228–39234. doi:10.1074/jbc.M205210200. PubMed DOI

Dicenzo GC, Finan TM. 2017. The divided bacterial genome: structure, function, and evolution. Microbiol Mol Biol Rev 81:e00019-17. doi:10.1128/MMBR.00019-17. PubMed DOI PMC

Cechová J, Lýsek J, Bartas M, Brázda V. 2018. Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability. Bioinformatics 34:1081–1085. doi:10.1093/bioinformatics/btx729. PubMed DOI PMC

Brázda V, Lýsek J, Bartas M, Fojta M. 2018. Complex analyses of short inverted repeats in all sequenced chloroplast DNAs. BioMed Res Int 2018:1097018. doi:10.1155/2018/1097018. PubMed DOI PMC

Kolstø A-B. 1997. Dynamic bacterial genome organization. Mol Microbiol 24:241–248. doi:10.1046/j.1365-2958.1997.3501715.x. PubMed DOI

Brazda V, Fojta M, Bowater RP. 2020. Structures and stability of simple DNA repeats from bacteria. Biochem J 477:325–339. doi:10.1042/BCJ20190703. PubMed DOI PMC

White AE, Hieb AR, Luger K. 2016. A quantitative investigation of linker histone interactions with nucleosomes and chromatin. Sci Rep 6:19122. doi:10.1038/srep19122. PubMed DOI PMC

Brázda V, Coufal J. 2017. Recognition of local DNA structures by P53 protein. Int J Mol Sci 18:375. doi:10.3390/ijms18020375. PubMed DOI PMC

Waldmann T, Baack M, Richter N, Gruss C. 2003. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res 31:7003–7010. doi:10.1093/nar/gkg864. PubMed DOI PMC

Lyubchenko YL. 2004. DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys 41:75–98. doi:10.1385/CBB:41:1:075. PubMed DOI

Déclais A-C, Lilley DM. 2008. New insight into the recognition of branched DNA structure by junction-resolving enzymes. Curr Opin Struct Biol 18:86–95. doi:10.1016/j.sbi.2007.11.001. PubMed DOI

Tolmasky ME, Colloms S, Blakely G, Sherratt DJ. 2000. Stability by multimer resolution of PJHCMW1 is due to the Tn 1331 resolvase and not to the Escherichia coli Xer system. Microbiology 146:581–589. doi:10.1099/00221287-146-3-581. PubMed DOI

Zuker M. 2003. Mfold Web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415. doi:10.1093/nar/gkg595. PubMed DOI PMC

Brázda V, Kolomazník J, Lýsek J, Hároníková L, Coufal J, Št'astný J. 2016. Palindrome analyser—a new Web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem Biophys Res Commun 478:1739–1745. doi:10.1016/j.bbrc.2016.09.015. PubMed DOI

van Noort V, Worning P, Ussery DW, Rosche WA, Sinden RR. 2003. Strand misalignments lead to quasipalindrome correction. Trends Genet 19:365–369. doi:10.1016/s0168-9525(03)00136-7. PubMed DOI

Darmon E, Leach DR. 2014. Bacterial genome instability. Microbiol Mol Biol Rev 78:1–39. doi:10.1128/MMBR.00035-13. PubMed DOI PMC

Goyache J, Ballesteros C, Vela AI, Collins MD, Briones V, Hutson RA, Potti J, García-Borboroglu P, Domínguez L, Fernández-Garayzábal JF. 2003. Corynebacterium sphenisci sp. nov., isolated from wild penguins. Int J Syst Evol Microbiol 53:1009–1012. doi:10.1099/ijs.0.02502-0. PubMed DOI

van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Morán F, Moya A. 2003. Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586. doi:10.1073/pnas.0235981100. PubMed DOI PMC

Ataliba AC, Resende JS, Yoshinari N, Labruna MB. 2007. Isolation and molecular characterization of a Brazilian strain of Borrelia anserina, the agent of fowl spirochaetosis. Res Vet Sci 83:145–149. doi:10.1016/j.rvsc.2006.11.014. PubMed DOI

Sloan DB, Moran NA. 2012. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol 29:3781–3792. doi:10.1093/molbev/mss180. PubMed DOI PMC

Schrank K, Choi B-K, Grund S, Moter A, Heuner K, Nattermann H, Göbel UB. 1999. Treponema brennaborense sp. nov., a novel spirochaete isolated from a dairy cow suffering from digital dermatitis. Int J Syst Evol Microbiol 49:43–50. doi:10.1099/00207713-49-1-43. PubMed DOI

Ouwerkerk JP, Aalvink S, Belzer C, de Vos WM. 2016. Akkermansia glycaniphila sp. nov., an anaerobic mucin-degrading bacterium isolated from reticulated python faeces. Int J Syst Evol Microbiol 66:4614–4620. doi:10.1099/ijsem.0.001399. PubMed DOI

Ouwerkerk JP, Koehorst JJ, Schaap PJ, Ritari J, Paulin L, Belzer C, de Vos WM. 2017. Complete genome sequence of Akkermansia glycaniphila strain PytT, a mucin-degrading specialist of the reticulated python gut. Genome Announc 5:e01098-16. doi:10.1128/genomeA.01098-16. PubMed DOI PMC

Somprasong N, Hall CM, Webb JR, Sahl JW, Wagner DM, Keim P, Currie BJ, Schweizer HP. 2021. Burkholderia ubonensis high-level tetracycline resistance is due to efflux pump synergy involving a novel TetA (64) resistance determinant. Antimicrob Agents Chemother 65:e01767-20. doi:10.1128/AAC.01767-20. PubMed DOI PMC

Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 103:15200–15205. doi:10.1073/pnas.0607335103. PubMed DOI PMC

Bartas M, Bažantová P, Brázda V, Liao JC, Červeň J, Pečinka P. 2019. Identification of distinct amino acid composition of human cruciform binding proteins. Mol Biol 53:97–106. doi:10.1134/S0026893319010023. PubMed DOI

Suvorova IA, Rodionov DA. 2016. Comparative genomics of pyridoxal 5′-phosphate-dependent transcription factor regulons in bacteria. Microb Genom 2:e000047. doi:10.1099/mgen.0.000047. PubMed DOI PMC

Bohálová N, Dobrovolná M, Brázda V, Bidula S. 2022. Conservation and over-representation of G-quadruplex sequences in regulatory regions of mitochondrial DNA across distinct taxonomic sub-groups. Biochimie 194:28–34. doi:10.1016/j.biochi.2021.12.006. PubMed DOI

Bartas M, Čutová M, Brázda V, Kaura P, Šťastný J, Kolomazník J, Coufal J, Goswami P, Červeň J, Pečinka P. 2019. The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules 24:1711. doi:10.3390/molecules24091711. PubMed DOI PMC

Richmond SJ, Hilton AL, Clarke SK. 1972. Chlamydial infection. role of chlamydia subgroup a in non-gonococcal and post-gonococcal urethritis. Br J Vener Dis 48:437–444. doi:10.1136/sti.48.6.437. PubMed DOI PMC

Čutová M, Manta J, Porubiaková O, Kaura P, Šťastný J, Jagelská EB, Goswami P, Bartas M, Brázda V. 2020. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae. Genomics 112:1897–1901. doi:10.1016/j.ygeno.2019.11.002. PubMed DOI

Bartas M, Brázda V, Bohálová N, Cantara A, Volná A, Stachurová T, Malachová K, Jagelská EB, Porubiaková O, Červeň J, Pečinka P. 2020. In-depth bioinformatic analyses of Nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV viruses suggest important roles of non-canonical nucleic acid structures in their lifecycles. Front Microbiol 11:1583. doi:10.3389/fmicb.2020.01583. PubMed DOI PMC

Weixlbaumer A, Leon K, Landick R, Darst SA. 2013. Structural basis of transcriptional pausing in bacteria. Cell 152:431–441. doi:10.1016/j.cell.2012.12.020. PubMed DOI PMC

Nupponen NN, Kakkola L, Koivisto P, Visakorpi T. 1998. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 153:141–148. doi:10.1016/S0002-9440(10)65554-X. PubMed DOI PMC

Repoila F, Darfeuille F. 2009. Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects. Biol Cell 101:117–131. doi:10.1042/BC20070137. PubMed DOI

Kuznetsov A, Bollin CJ. 2021. NCBI genome workbench: desktop software for comparative genomics, visualization, and genbank data submission, p 261–295. In Katoh K (eds), Multiple sequence alignment. Methods in molecular biology, vol 2231. Humana, New York, NY. doi:10.1007/978-1-0716-1036-7_16. PubMed DOI

Brierley I, Pennell S. 2001. Structure and function of the stimulatory RNAs involved in programmed Eukaryotic–1 ribosomal frameshifting. Cold Spring Harb Symp Quant Biol 66:233–248. doi:10.1101/sqb.2001.66.233. PubMed DOI

Achaz G, Coissac E, Netter P, Rocha EP. 2003. Associations between inverted repeats and the structural evolution of bacterial genomes. Genetics 164:1279–1289. doi:10.1093/genetics/164.4.1279. PubMed DOI PMC

El Kafsi H, Loux V, Mariadassou M, Blin C, Chiapello H, Abraham A-L, Maguin E, Van De Guchte M. 2017. Unprecedented large inverted repeats at the replication terminus of circular bacterial chromosomes suggest a novel mode of chromosome rescue. Sci Rep 7:44331. doi:10.1038/srep44331. PubMed DOI PMC

Goswami P, Bartas M, Lexa M, Bohálová N, Volná A, Červeň J, Červeňová V, Pečinka P, Špunda V, Fojta M, Brázda V. 2021. SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci. Brief Bioinformatics 22:1338–1345. doi:10.1093/bib/bbaa385. PubMed DOI PMC

Yin C, Yau SS-T. 2021. Inverted repeats in coronavirus SARS-CoV-2 genome manifest the evolution events. J Theor Biol 530:110885. doi:10.1016/j.jtbi.2021.110885. PubMed DOI PMC

Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W, Marchler-Bauer A, Landrum M, Lathrop S, Lu Z, Madden TL, O'Leary N, Phan L, Rangwala SH, Schneider VA, Skripchenko Y, Wang J, Ye J, Trawick BW, Pruitt KD, Sherry ST. 2021. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 49:D10–D17. doi:10.1093/nar/gkaa892. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...