Forest die-back modified plankton recovery from acidic stress
Jazyk angličtina Země Švédsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23729296
PubMed Central
PMC3906477
DOI
10.1007/s13280-013-0415-5
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- fyziologický stres * MeSH
- jezera chemie parazitologie MeSH
- koncentrace vodíkových iontů MeSH
- kyselý déšť * MeSH
- plankton * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH
- Názvy látek
- kyselý déšť * MeSH
We examined long-term data on water chemistry of Lake Rachelsee (Germany) following the changes in acidic depositions in central Europe since 1980s. Despite gradual chemical recovery of Rachelsee, its biological recovery was delayed. In 1999, lake recovery was abruptly reversed by a coincident forest die-back, which resulted in elevated terrestrial export of nitrate and ionic aluminum lasting ~5 years. This re-acidification episode provided unique opportunity to study plankton recovery in the rapidly recovering lake water after the abrupt decline in nitrate leaching from the catchment. There were sudden changes both in lake water chemistry and in plankton biomass structure, such as decreased bacterial filaments, increased phytoplankton biomass, and rotifer abundance. The shift from dominance of heterotrophic to autotrophic organisms suggested their substantial release from severe phosphorus stress. Such a rapid change in plankton structure in a lake recovering from acidity has, to the best of our knowledge, not been previously documented.
Zobrazit více v PubMed
Almer B, Dickson W, Ekström C, Hörnström E. Sulphur pollution and the aquatic ecosystems. In: Nriagu JO, editor. Sulphur in the environment, part II. Ecological impacts. New York: Wiley; 1978. pp. 271–311.
Avalos Perez EA, DeCosta J, Havens KE. The effects of nutrient addition and pH manipulation in bag experiments on the phytoplankton of a small acidic lake in West Virginia, USA. Hydrobiologia. 1994;291:93–103. doi: 10.1007/BF00044438. DOI
Currie DJ, Kalff J. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography. 1984;29:298–310. doi: 10.4319/lo.1984.29.2.0298. DOI
Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, et al. Acidic deposition in the northeastern US: Sources and inputs, ecosystems effects, and management strategies. BioScience. 2001;51:180–198. doi: 10.1641/0006-3568(2001)051[0180:ADITNU]2.0.CO;2. DOI
Fott J, Pražáková M, Stuchlík E, Stuchlíková Z. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia) Hydrobiologia. 1994;274:37–47. doi: 10.1007/BF00014625. DOI
Frič A. Über weitere Untersuchungen der Böhmerwaldseen. Sitzungsbericht der königlichen böhmischen Gesellschaft der Wissenschaften in Prag, Jahrgang. 1874;1873:103–109.
Graham MD, Vinebrooke RD, Keller B, Heneberry J, Nicholls KH, Findlay DL. Comparative responses of phytoplankton during chemical recovery in atmospherically and experimentally acidified lakes. Journal of Phycology. 2007;43:908–923. doi: 10.1111/j.1529-8817.2007.00398.x. DOI
Gray DK, Arnott SE. Recovery of acid damaged zooplankton communities: measurement, extent, and limiting factors. Environmental Reviews. 2009;17:81–99. doi: 10.1139/A09-006. DOI
Hellich B. Die Cladoceren Böhmens. Archiv für die naturwissenschaftliche Landesdurchforschung von Böhmen, Prag. 1877;3:1–131.
Heurich M. Progress of forest regeneration after a large-scale Ips typographus outbreak in the subalpine Picea abies forests of the Bavarian Forest National Park. Silva Gabreta. 2009;15:49–66.
Jeffries DS, Clair TA, Couture S, Dillon PJ, Dupont J, Keller WB, McNicol DK, Turner MA, et al. Assessing the recovery of lakes in southeastern Canada from the effects of acidic deposition. AMBIO. 2003;32:176–182. PubMed
Keller W, Yan ND. Biological recovery from lake acidification: Zooplankton communities as a model of patterns and processes. Restoration Ecology. 1998;6:364–375. doi: 10.1046/j.1526-100X.1998.06407.x. DOI
Kopáček J, Hejzlar J, Stuchlík E, Fott J, Veselý J. Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnology and Oceanography. 1998;43:357–361. doi: 10.4319/lo.1998.43.2.0357. DOI
Kopáček J, Hejzlar J, Mosello R. Estimation of organic acid anion concentrations and evaluation of charge balance in atmospherically acidified colored waters. Water Research. 2000;34:3598–3606. doi: 10.1016/S0043-1354(00)00109-3. DOI
Kopáček J, Brzáková M, Hejzlar J, Nedoma J, Porcal P, Vrba J. Nutrient cycling in a strongly acidified mesotrophic lake. Limnology and Oceanography. 2004;49:1202–1213. doi: 10.4319/lo.2004.49.4.1202. DOI
Kopáček J, Posch M, Hejzlar J, Oulehle F, Volková A. An elevation-based regional model for interpolating sulphur and nitrogen deposition. Atmospheric Environment. 2012;50:287–296. doi: 10.1016/j.atmosenv.2011.12.017. DOI
Koste W. Rotatoria. Die Rädertiere Mitteleuropas. I. Textband. Berlin: Gebrüder Borntraeger; 1978.
Nedbalová L, Vrba J, Fott J, Kohout L, Kopáček J, Macek M, Soldán T. Biological recovery of the Bohemian Forest lakes from acidification. Biologia. 2006;61:S453–S465. doi: 10.2478/s11756-007-0071-y. DOI
Nedoma, J., J. Vrba, T. Hanzl, and L. Nedbalová. 2001. Quantification of pelagic filamentous microorganisms in aquatic environments. FEMS Microbiology Ecology 38: 81–85.
Psenner R, Catalan J. Chemical composition of lakes in crystalline basins: A combination of atmospheric deposition, geologic background, biological activity and human action. In: Margalef R, editor. Limnology now: A paradigm of planetary problems. Amsterdam: Elsevier; 1994. pp. 255–314.
Reuss JO, Johnson DW. Acid deposition and the acidification of soils and waters. New York: Springer; 1986.
Schaumburg J. Long-term trends in biology and chemistry of the acidified Bavarian Forest lakes. Silva Gabreta. 2000;4:29–40.
Schindler DW. Effects of acid rain on freshwater ecosystems. Science. 1988;239:149–157. doi: 10.1126/science.239.4836.149. PubMed DOI
Skjelkvåle BL, Evans C, Larssen T, Hindar A, Raddum GG. Recovery from acidification in European surface waters: A view to the future. AMBIO. 2003;32:170–175. PubMed
Steinberg C, Arzet K, Krause-Dellin D. Gewässerversauerung in der Bundesrepublik Deutschland im Lichte paläolimnologischer Studien. Naturwissenschaften. 1984;71:631–633. doi: 10.1007/BF00377898. DOI
Stoddard JL, Jeffries DS, Lükewille A, Clair TA, Dillon PJ, Driscoll CT, Forsius M, Johannessen M, et al. Regional trends in aquatic recovery from acidification in North America and Europe. Nature. 1999;401:575–578. doi: 10.1038/44114. DOI
Straškrabová V, Callieri C, Carrillo P, Cruz-Pizarro L, Fott J, Hartman P, Macek M, Medina-Sánchez JM, et al. Investigations on pelagic food webs in mountain lakes—Aims and methods. Journal of Limnology. 1999;58:77–87.
ter Braak, C.J.F., and P. Šmilauer. 2002. CANOCO Reference Manual and Users Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4.5). Ithaca, NY: Microcomputer Power.
Veselý J, Hruška J, Norton SA, Johnson CE. Trends in water chemistry of acidified Bohemian lakes from 1984 to 1995: I. Major solutes. Water, Air, and Soil Pollution. 1998;108:107–127. doi: 10.1023/A:1005064829981. DOI
Veselý J, Hruška J, Norton SA. Trends in water chemistry of acidified Bohemian lakes from 1984 to 1995: II. Trace elements and aluminium. Water, Air, and Soil Pollution. 1998;108:425–443. doi: 10.1023/A:1005007627334. DOI
Vrba J, Kopáček J, Fott J. Long-term limnological research of the Bohemian Forest lakes and their recent status. Silva Gabreta. 2000;4:7–27.
Vrba J, Kopáček J, Fott J, Kohout L, Nedbalová L, Pražáková M, Soldán T, Schaumburg J. Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe) Science of the Total Environment. 2003;310:73–85. doi: 10.1016/S0048-9697(02)00624-1. PubMed DOI
Vrba J, Nedoma J, Kohout L, Kopáček J, Nedbalová L, Ráčková P, Šimek K. Massive occurrence of heterotrophic filaments in acidified lakes: Seasonal dynamics and composition. FEMS Microbiology Ecology. 2003;46:281–294. doi: 10.1016/S0168-6496(03)00201-0. PubMed DOI
Vrba J, Kopáček J, Bittl T, Nedoma J, Štrojsová A, Nedbalová L, Kohout L, Fott J. A key role of aluminium in phosphorus availability, food web structure, and plankton dynamics in strongly acidified lakes. Biologia. 2006;61:S441–S451. doi: 10.2478/s11756-007-0077-5. DOI
Wright RF, Larssen T, Camarero L, Cosby BJ, Ferrier RC, Helliwell R, Forsius M, Jenkins A, et al. Recovery of acidified European surface waters. Environmental Science and Technology. 2005;39:64A–72A. doi: 10.1021/es0531778. PubMed DOI
Yan ND, Leung B, Keller WB, Arnott SE, Gunn JM, Raddum GG. Developing conceptual frameworks for the recovery of aquatic biota from acidification. AMBIO. 2003;32:165–169. PubMed