Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation

. 2024 Oct 12 ; 15 (1) : 8833. [epub] 20241012

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39396056
Odkazy

PubMed 39396056
PubMed Central PMC11470940
DOI 10.1038/s41467-024-53157-w
PII: 10.1038/s41467-024-53157-w
Knihovny.cz E-zdroje

Baobab (Adansonia digitata) is a long-lived tree endemic to Africa with economic, ecological, and cultural importance, yet its genomic features are underexplored. Here, we report a chromosome-level reference genome anchored to 42 chromosomes for A. digitata, alongside draft assemblies for a sibling tree, two trees from distinct locations in Africa, and A. za from Madagascar. The baobab genome is uniquely rich in DNA transposons, which make up 33%, while LTR retrotransposons account for 10%. A. digitata experienced whole genome multiplication (WGM) around 30 million years ago (MYA), followed by a second WGM event 3-11 MYA, likely linked to autotetraploidy. Resequencing of 25 trees identify three subpopulations, with gene flow across West Africa distinct from East Africa. Gene enrichment and fixation index (Fst) analyses show baobab retained multiple circadian, flowering, and light-responsive genes, which likely support longevity through the UV RESISTANCE LOCUS 8 (UVR8) pathway. In sum, we provide genomic resources and insights for baobab breeding and conservation.

Zobrazit více v PubMed

Gibb, H. A. R. & Beckingham, C. F. The Travels of Ibn Battuta, AD1325–1354 (Routledge, 2017).

Baum, D. A. A systematic revision of Adansonia (Bombacaceae). Ann. Mo. Bot. Gard.82, 440–470 (1995).

Asogwa, I. S., Ibrahim, A. N. & Agbaka, J. I. African baobab: its role in enhancing nutrition, health, and the environment. Trees For. People3, 100043 (2021).

Silva, V. M., Putti, F. F., White, P. J. & Reis, A. R. D. Phytic acid accumulation in plants: biosynthesis pathway regulation and role in human diet. Plant Physiol. Biochem.164, 132–146 (2021). PubMed

Research and Markets. Baobab powder - global strategic business report. https://www.researchandmarkets.com/reports/5029822/baobab-powder-global-strategic-business-report (2024).

Offiah, V. O. & Falade, K. O. Potentials of baobab in food systems. Appl. Food Res.3, 100299 (2023).

Patrut, A. et al. The demise of the largest and oldest African baobabs. Nat. Plants4, 423–426 (2018). PubMed

Gebauer, J. et al. Africa’s wooden elephant: the baobab tree (Adansonia digitata L.) in Sudan and Kenya: a review. Genet. Resour. Crop Evol.63, 377–399 (2016).

Venter, S. M. & Witkowski, E. T. F. Where are the young baobabs? Factors affecting regeneration of Adansonia digitata L. in a communally managed region of southern Africa. J. Arid Environ.92, 1–13 (2013).

Venter, S. M. et al. Baobabs (Adansonia digitata L.) are self-incompatible and ‘male’ trees can produce fruit if hand-pollinated. S. Afr. J. Bot.109, 263–268 (2017).

Karimi, N. et al. Evidence for hawkmoth pollination in the chiropterophilous African baobab (Adansonia digitata). Biotropica54, 113–124 (2022).

Start, A. N. Pollination of the baobab (Adansonia digitata L.) by the fruit bat Rousettus aegyptiacus E. Geoffroy. Afr. J. Ecol.10, 71–72 (1972).

Taylor, P. J., Vise, C., Krishnamoorthy, M. A., Kingston, T. & Venter, S. Citizen science confirms the rarity of fruit bat pollination of baobab (Adansonia digitata) flowers in Southern Africa. Diversity12, 106 (2020).

Coe, M. J. & Isaac, F. M. Pollination of the baobab (Adansonia digitata L.) by the lesser bush baby (Galago crassicaudatus E. Geoffroy). East Afr. Wildl. J.3, 123–124 (1965).

Cron, G. V. et al. One African baobab species or two? Synonymy of Adansonia kilima and A. digitata. Taxon65, 1037–1049 (2016).

Patrut, A. et al. Radiocarbon dating of two old African baobabs from India. PLoS ONE15, e0227352 (2020). PubMed PMC

Swanepoel, C. M. Notes and records baobab phenology and growth in the Zambezi Valley, Zimbabwe. Afr. J. Ecol.31, 84–86 (1993).

Kitony, J. K. Nested association mapping population in crops: current status and future prospects. J. Crop Sci. Biotechnol.26, 1–12 (2022).

Levin, D. A. The Role of Chromosomal Change in Plant Evolution (Oxford Univ. Press, Oxford, 2002).

Wickens, G. E. The Baobabs: Pachycauls of Africa, Madagascar and Australia (Springer Science & Business Media, 2008).

Chan, E. K. F. et al. Human origins in a southern African palaeo-wetland and first migrations. Nature575, 185–189 (2019). PubMed

Sanchez, A. C., Osborne, P. E. & Haq, N. Climate change and the African baobab (Adansonia digitata L.): the need for better conservation strategies. Afr. J. Ecol.49, 234–245 (2011).

Woods, S., O’Neill, K. & Pirro, S. The complete genome sequence of (Malvaceae, Malvales), the African baobab. Biodivers. Genomes10.56179/001c.72789 (2023). PubMed PMC

Wan, J.-N. et al. The rise of baobab trees in Madagascar. Nature629, 1091–1099 (2024). PubMed PMC

Islam-Faridi, N., Sakhanokho, H. F. & Dana Nelson, C. New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - ‘The Tree of Life’. Sci. Rep.10, 13174 (2020). PubMed PMC

Costa, L., Oliveira, Á., Carvalho-Sobrinho, J. & Souza, G. Comparative cytomolecular analyses reveal karyotype variability related to biogeographic and species richness patterns in Bombacoideae (Malvaceae). Plant Syst. Evol.303, 1131–1144 (2017).

Baum, D. A. & Oginuma, K. A review of chromosome numbers in Bombacaceae with new counts for Adansonia. Taxon43, 1 (1994).

Pettigrew FRS, J. D. et al. Morphology, ploidy and molecular phylogenetics reveal a new diploid species from Africa in the baobab genus Adansonia (Malvaceae: Bombacoideae). Taxon61, 1240–1250 (2012).

Bennett, M. D. & Leitch, I. J. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann. Bot.107, 467–590 (2011). PubMed PMC

Henniges, M. C. et al. The plant DNA C-values database: a one-stop shop for plant genome size data. Methods Mol. Biol.2703, 111–122 (2023). PubMed

Leong Pock Tsy, J.-M. et al. Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression. Ann. Bot.112, 1759–1773 (2013). PubMed PMC

Sun, H. et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid potato cultivar. Nat. Genet.54, 342–348 (2022). PubMed PMC

Aklilu, B. B. et al. Functional diversification of replication protein A paralogs and telomere length maintenance in Arabidopsis. Genetics215, 989–1002 (2020). PubMed PMC

Aklilu, B. B., Soderquist, R. S. & Culligan, K. M. Genetic analysis of the replication protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication. Nucleic Acids Res.42, 3104–3118 (2014). PubMed PMC

Ishibashi, T. et al. Two types of replication protein A in seed plants. FEBS J.272, 3270–3281 (2005). PubMed

Takashi, Y., Kobayashi, Y., Tanaka, K. & Tamura, K. Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. Plant Cell Physiol.50, 1965–1976 (2009). PubMed

Colt, K. et al. Telomere length in plants estimated with long read sequencing. Preprint at bioRxiv10.1101/2024.03.27.586973 (2024).

Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C. & Blasco, M. A. Telomere shortening rate predicts species life span. Proc. Natl Acad. Sci. USA116, 15122–15127 (2019). PubMed PMC

Han, Y. et al. Chromosome-level genome assembly of Welwitschia mirabilis, a unique Namib Desert species. Mol. Ecol. Resour.22, 391–403 (2022). PubMed

Wan, T. et al. The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat. Commun.12, 4247 (2021). PubMed PMC

Patrut, A. et al. AMS radiocarbon dating of large Za baobabs (Adansonia za) of Madagascar. PLoS ONE11, e0146977 (2016). PubMed PMC

Scott, A. D., Stenz, N. W. M., Ingvarsson, P. K. & Baum, D. A. Whole genome duplication in coast redwood (Sequoia sempervirens) and its implications for explaining the rarity of polyploidy in conifers. N. Phytol.211, 186–193 (2016). PubMed

Ernst, E. et al. The genomes and epigenomes of aquatic plants (Lemnaceae) promote triploid hybridization and clonal reproduction. Preprint at bioRxiv10.1101/2023.08.02.551673 (2023).

VanBuren, R. et al. Exceptional subgenome stability and functional divergence in the allotetraploid Ethiopian cereal teff. Nat. Commun.11, 884 (2020). PubMed PMC

Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol.20, 249 (2019). PubMed PMC

Wilkinson, G. S. et al. DNA methylation predicts age and provides insight into exceptional longevity of bats. Nat. Commun.12, 1615 (2021). PubMed PMC

Mira, S., Pirredda, M., Martín-Sánchez, M., Marchessi, J. E. & Martín, C. DNA methylation and integrity in aged seeds and regenerated plants. Seed Sci. Res.30, 92–100 (2020).

Gallego-Bartolomé, J. DNA methylation in plants: mechanisms and tools for targeted manipulation. N. Phytol.227, 38–44 (2020). PubMed

Naish, M. et al. The genetic and epigenetic landscape of the centromeres. Science374, eabi7489 (2021). PubMed PMC

Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol.17, 194 (2016). PubMed PMC

Michael, T. P. Plant genome size variation: bloating and purging DNA. Brief. Funct. Genom.13, 308–317 (2014). PubMed

Comai, L., Maheshwari, S. & Marimuthu, M. P. A. Plant centromeres. Curr. Opin. Plant Biol.36, 158–167 (2017). PubMed

Tilbrook, K. et al. The UVR8 UV-B photoreceptor: perception, signaling and response. Arabidopsis Book11, e0164 (2013). PubMed PMC

Tossi, V. E. et al. Beyond Arabidopsis: differential UV-B response mediated by UVR8 in diverse species. Front. Plant Sci.10, 780 (2019). PubMed PMC

Liu, W. et al. Phosphorylation of Arabidopsis UVR8 photoreceptor modulates protein interactions and responses to UV-B radiation. Nat. Commun.15, 1221 (2024). PubMed PMC

Jenkins, G. I. The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell26, 21–37 (2014). PubMed PMC

Bourbousse, C., Barneche, F. & Laloi, C. Plant chromatin catches the sun. Front. Plant Sci.10, 1728 (2019). PubMed PMC

Amborella Genome Project. The Amborella genome and the evolution of flowering plants. Science342, 1241089 (2013). PubMed

Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature449, 463–467 (2007). PubMed

Karimi, N. et al. Reticulate evolution helps explain apparent homoplasy in floral biology and pollination in baobabs (Adansonia; Bombacoideae; Malvaceae). Syst. Biol.69, 462–478 (2020). PubMed

Wang, M. et al. Comparative genome analyses highlight transposon-mediated genome expansion and the evolutionary architecture of 3D genomic folding in cotton. Mol. Biol. Evol.38, 3621–3636 (2021). PubMed PMC

Conover, J. L. et al. A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? J. Integr. Plant Biol.61, 12–31 (2019). PubMed

Argout, X. et al. The genome of Theobroma cacao. Nat. Genet.43, 101–108 (2010). PubMed

Wang, X. et al. Comparative genomic de-convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. N. Phytol.209, 1252–1263 (2016). PubMed

Paterson, A. H. et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature492, 423–427 (2012). PubMed

Sun, P. et al. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc. Natl Acad. Sci. USA121, e2313921121 (2024). PubMed PMC

Shao, L. et al. High-quality genomes of Bombax ceiba and Ceiba pentandra provide insights into the evolution of Malvaceae species and differences in their natural fiber development. Plant Commun.5, 100832 (2024). PubMed PMC

Cheng, F. et al. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants4, 258–268 (2018). PubMed

Raju, S. K. K. Gene dosage balance immediately following whole-genome duplication in Arabidopsis. Plant cell32, 1344–1345 (2020). PubMed PMC

Michael, T. P. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. Plant Physiol.190, 1037–1056 (2022). PubMed PMC

Lou, P. et al. Preferential retention of circadian clock genes during diploidization following whole genome triplication in Brassica rapa. Plant Cell24, 2415–2426 (2012). PubMed PMC

Wickell, D. et al. Underwater CAM photosynthesis elucidated by Isoetes genome. Nat. Commun.12, 6348 (2021). PubMed PMC

Yang, X. et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun.8, 1–15 (2017). PubMed PMC

Wai, C. M. et al. Time of day and network reprogramming during drought induced CAM photosynthesis in Sedum album. PLoS Genet.15, e1008209 (2019). PubMed PMC

Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet.47, 1435–1442 (2015). PubMed PMC

Greenham, K. et al. Geographic variation of plant circadian clock function in natural and agricultural settings. J. Biol. Rhythms32, 26–34 (2017). PubMed

Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA117, 28867–28875 (2020). PubMed PMC

Soltis, P. S., Folk, R. A. & Soltis, D. E. Darwin review: angiosperm phylogeny and evolutionary radiations. Proc. R. Soc. B.286, 20190099 (2019).

Chetty, A., Glennon, K. L., Venter, S. M., Cron, G. V. & Witkowski, E. T. F. Reproductive ecology of the African baobab: floral features differ among individuals with different fruit production. Ecol. Manag.489, 119077 (2021).

Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics211, 289–304 (2019). PubMed PMC

Wild, S. Africa’s majestic baobab trees are mysteriously dying. Nature558, 529–529 (2018). PubMed

Birchler, J. A. & Veitia, R. A. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc. Natl Acad. Sci. USA109, 14746–14753 (2012). PubMed PMC

Feng, X. et al. Genomic evidence for rediploidization and adaptive evolution following the whole-genome triplication. Nat. Commun.15, 1635 (2024). PubMed PMC

Marshall, C. M., Thompson, V. L., Creux, N. M. & Harmer, S. L. The circadian clock controls temporal and spatial patterns of floral development in sunflower. eLife12, e80984 (2023). PubMed PMC

Fenske, M. P., Nguyen, L. P., Horn, E. K., Riffell, J. A. & Imaizumi, T. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta. Sci. Rep.8, 2842 (2018). PubMed PMC

Garsmeur, O. et al. Two evolutionarily distinct classes of paleopolyploidy. Mol. Biol. Evol.31, 448–454 (2014). PubMed

Fehér, B. et al. Functional interaction of the circadian clock and UV RESISTANCE LOCUS 8-controlled UV-B signaling pathways in Arabidopsis thaliana. Plant J.67, 37–48 (2011). PubMed

Monnahan, P. et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat. Ecol. Evol.3, 457–468 (2019). PubMed

Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160256 (2017). PubMed PMC

Fenske, M. P. & Imaizumi, T. Circadian rhythms in floral scent emission. Front. Plant Sci.7, 462 (2016). PubMed PMC

Klein, S. J. & O’Neill, R. J. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res.26, 5–23 (2018). PubMed PMC

Korbo, A. et al. Comparison of East and West African populations of baobab (Adansonia digitata L.). Agrofor. Syst.85, 505–518 (2011).

Liao, N. et al. Chromosome-level genome assembly of bunching onion illuminates genome evolution and flavor formation in Allium crops. Nat. Commun.13, 6690 (2022). PubMed PMC

Budhlakoti, N. et al. Genomic selection: a tool for accelerating the efficiency of molecular breeding for development of climate-resilient crops. Front. Genet.13, 832153 (2022). PubMed PMC

Lutz, K. A., Wang, W., Zdepski, A. & Michael, T. P. Isolation and analysis of high quality nuclear DNA with reduced organellar DNA for plant genome sequencing and resequencing. BMC Biotechnol.11, 54 (2011). PubMed PMC

Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol.37, 540–546 (2019). PubMed

Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res.27, 737–746 (2017). PubMed PMC

Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963 (2014). PubMed PMC

Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol.38, 4647–4654 (2021). PubMed PMC

Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun.11, 1432 (2020). PubMed PMC

Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinforma.19, 122 (2018). PubMed PMC

Ou, S. et al. Author correction: Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol.23, 76 (2022). PubMed PMC

Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.27, 573–580 (1999). PubMed PMC

Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol.38, 5825–5829 (2021). PubMed PMC

Lynch, R. C. et al. Domesticated cannabinoid synthases amid a wild mosaic cannabis pangenome. Preprint at bioRxiv10.1101/2024.05.21.595196 (2024).

Cossu, R. M., Buti, M., Giordani, T., Natali, L. & Cavallini, A. A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet. Genomes8, 61–75 (2011).

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol.20, 238 (2019). PubMed PMC

Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res.40, D1178–D1186 (2012). PubMed PMC

Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics36, 5516–5518 (2021). PubMed

Padgitt-Cobb, L. K., Pitra, N. J., Matthews, P. D., Henning, J. A. & Hendrix, D. A. An improved assembly of the ‘Cascade’ hop (Humulus lupulus) genome uncovers signatures of molecular evolution and refines time of divergence estimates for the Cannabaceae family. Hortic. Res10, uhac281 (2023). PubMed PMC

Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol.20, 277 (2019). PubMed PMC

Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA93, 10274–10279 (1996). PubMed PMC

Klopfenstein, D. V. et al. GOATOOLS: a Python library for gene ontology analyses. Sci. Rep.8, 10872 (2018). PubMed PMC

Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE6, e21800 (2011). PubMed PMC

Kitony, J. K. et al. Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation. Figshare, 10.6084/m9.figshare.26039878 (2024). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chromosome-level baobab genome illuminates its evolutionary trajectory and environmental adaptation

. 2024 Oct 12 ; 15 (1) : 8833. [epub] 20241012

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...