Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29190749
PubMed Central
PMC5708818
DOI
10.1371/journal.pone.0188795
PII: PONE-D-17-29812
Knihovny.cz E-zdroje
- MeSH
- fyziologický stres * MeSH
- fyziologie rostlin * MeSH
- pastviny * MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND AIMS: Understanding the consequences of polyploidization is a major step towards assessing the importance of this mode of speciation. Most previous studies comparing different cytotypes, however, did so only within a single environment and considered only one group of traits. To take a step further, we need to explore multiple environments and a wide range of traits. The aim of this study was to assess response of diploid and autotetraploid individuals of Knautia arvensis (Dipsacaceae) to two stress conditions, shade or drought. METHODS: We studied eleven photosynthetic, morphological and fitness parameters of the plants over three years in a common garden under ambient conditions and two types of stress. KEY RESULTS: The results indicate strong differences in performance and physiology between cytotypes in ambient conditions. Interestingly, higher fitness in diploids contrasted with more efficient photosynthesis in tetraploids in ambient conditions. However, stress, especially drought, strongly reduced fitness and disrupted function of the photosystems in both cytotypes reducing the between cytotype differences. The results indicate that drought stress reduced function of the photosynthetic processes in both cytotypes but particularly in tetraploids, while fitness reduction was stronger in diploids. CONCLUSIONS: The photosynthesis related traits show higher plasticity in polyploids as theoretically expected, while the fitness related traits show higher plasticity in diploids especially in response to drought. This suggests that between cytotype comparisons need to consider multiple traits and multiple environments to understand the breath of possible responses of different cytotypes to stress. They also show that integrating results based on different traits is not straightforward and call for better mechanistic understanding of the relationships between species photosynthetic activity and fitness. Still, considering multiple environments and multiple species traits is crucial for understanding the drivers of niche differentiation between cytotypes in future studies.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS. Polyploidy and interspecific hybridisation: partners for adaptation, speciation and evolution in plants. Annals of Botany. 2017. PubMed PMC
Masterson J. Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science. 1994;264(5157):421–4. doi: 10.1126/science.264.5157.421 PubMed PMID: WOS:A1994NG19400039. PubMed DOI
Müntzing A. The evolutionary significance of autopolyploidy. Hereditas. 1936;21:263–378
Clausen J, Keck D, Hiesey W. Experimental studies on the nature of species. II. Plant evolution through amphiploidy and autopolyploidy, with examples from the Madiinae. Washington, D.C., USA: Carnegie Institute of Washington; 1945.
Stebbins G. Chromosomal evolution in higher plants. London, Great Britain: Edward Arnold; 1971.
Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytologist. 2010;186(1):5–17. doi: 10.1111/j.1469-8137.2009.03142.x PubMed PMID: WOS:000275184700002. PubMed DOI
Chen L, Lou Q, Zhuang Y, Chen J, Zhang X, Wolukau JN. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis x hytivus. Planta. 2007;225(3):603–14. doi: 10.1007/s00425-006-0381-2 PubMed PMID: WOS:000243964000007. PubMed DOI
Wendel JF. Genome evolution in polyploids. Plant Molecular Biology. 2000;42(1):225–49. doi: 10.1023/a:1006392424384 PubMed PMID: WOS:000084535800012. PubMed DOI
Levy AA, Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biological Journal of the Linnean Society. 2004;82(4):607–13. doi: 10.1111/j.1095-8312.2004.00346.x PubMed PMID: WOS:000223808600019. DOI
Soltis DE, Visger CJ, Soltis PS. The polyploidy revolution then…and now: Stebbins revisited. American Journal of Botany. 2014;101(7):1057–78. doi: 10.3732/ajb.1400178 PubMed PMID: WOS:000340453800001. PubMed DOI
Soltis PS, Liu XX, Marchant DB, Visger CJ, Soltis DE. Polyploidy and novelty: Gottlieb's legacy. Philosophical Transactions of the Royal Society B-Biological Sciences. 2014;369(1648). doi: 10.1098/rstb.2013.0351 PubMed PMID: WOS:000338397100011. PubMed DOI PMC
Soltis DE, Soltis PS, Bennett MD, Leitch IJ. Evolution of genome size in the angiosperms. American Journal of Botany. 2003;90(11):1596–603. doi: 10.3732/ajb.90.11.1596 PubMed PMID: WOS:000186639900006. PubMed DOI
Mandáková T, Münzbergová Z. Morphometric and genetic differentiation of diploid and hexaploid populations of Aster amellus agg. in a contact zone. Plant Systematics and Evolution. 2008;274(3–4):155–70. doi: 10.1007/s00606-008-0040-0 PubMed PMID: WOS:000259043000003. DOI
Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(13):7051–7. doi: 10.1073/pnas.97.13.7051 PubMed PMID: WOS:000087811600025. PubMed DOI PMC
Münzbergová Z, Surinova M, Castro S. Absence of gene flow between diploids and hexaploids of Aster amellus at multiple spatial scales. Heredity. 2013;110(2):123–30. doi: 10.1038/hdy.2012.87 PubMed PMID: WOS:000313836500006. PubMed DOI PMC
Eliášová A, Trávníček P, Mandák B, Münzbergová Z. Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids. Annals of Botany. 2014;113(1):159–70. doi: 10.1093/aob/mct252 PubMed PMID: WOS:000329063300020. PubMed DOI PMC
Song KM, Lu P, Tang KL, Osborn TC. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(17):7719–23. doi: 10.1073/pnas.92.17.7719 PubMed PMID: WOS:A1995RP74800025. PubMed DOI PMC
Li WL, Berlyn GP, Ashton PMS. Polyplolds and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). American Journal of Botany. 1996;83(1):15–20. doi: 10.2307/2445949 PubMed PMID: WOS:A1996TQ26600003. DOI
Liu SY, Chen SM, Chen Y, Guan ZY, Yin DM, Chen FD. In vitro induced tetraploid of Dendranthema nankingense (Nakai) Tzvel. shows an improved level of abiotic stress tolerance. Scientia Horticulturae. 2011;127(3):411–9. doi: 10.1016/j.scienta.2010.10.012 PubMed PMID: WOS:000286712300034. DOI
Yang PM, Huang QC, Qin GY, Zhao SP, Zhou JG. Different drought-stress responses in photosynthesis and reactive oxygen metabolism between autotetraploid and diploid rice. Photosynthetica. 2014;52(2):193–202. doi: 10.1007/s11099-014-0020-2 PubMed PMID: WOS:000340622600004. DOI
Sugiyama S. Responses of shoot growth and survival to water stress gradient in diploid and tetraploid populations of Lolium multiflorum and L. perenne. Grassland science. 2006;52:155–60.
Thompson KA, Husband BC, Maherali H. No influence of water limitation on the outcome of competition between diploid and tetraploid Chamerion angustifolium (Onagraceae). Journal of Ecology. 2015;103(3):733–41. doi: 10.1111/1365-2745.12384 DOI
Hijmans RJ, Gavrilenko T, Stephenson S, Bamberg J, Salas A, Spooner DM. Geographical and environmental range expansit trough polyploidy in wild potatoes (Solanum section Petota). Global ecology and biogeography. 2007;16:485–95.
Frydrych J. Photosyntetic characteristics od diploid and tetraploid forms of Brassica oleracea var. gongylodes grown under different irradiance. Photosynthetica. 1970;4:139–45.
Sano Y. Adaptive strategies compared between the diploid and tetraploid forms of Oryza punctata. Botanical Magazine-Tokyo. 1980;93(1031):171–80. doi: 10.1007/bf02489319 PubMed PMID: WOS:A1980KL98300001. DOI
Petit C, Thompson JD. Variation in phenotypic response to light availability between diploid and tetraploid populations of the perennial grass Arrhenatherum elatius from open and woodland sites. Journal of Ecology. 1997;85(5):657–67. doi: 10.2307/2960536 PubMed PMID: WOS:A1997YB78800009. DOI
Warner DA, Edwards GE. Effects of polyploidy on photosynthesis. Photosynthesis Research. 1993;35(2):135–47. doi: 10.1007/BF00014744 PubMed PMID: WOS:A1993KL45300003. PubMed DOI
Maherali H, Walden AE, Husband BC. Genome duplication and the evolution of physiological responses to water stress. New Phytologist. 2009;184(3):721–31. doi: 10.1111/j.1469-8137.2009.02997.x PubMed PMID: WOS:000270902200019. PubMed DOI
Maceira NO, Jacquard P, Lumaret R. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytologist. 1993;124(2):321–8. doi: 10.1111/j.1469-8137.1993.tb03822.x PubMed PMID: WOS:A1993LL72600014. PubMed DOI
Burton TL, Husband BC. Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: Mechanisms of inviability and implications for polyploid evolution. Evolution. 2000;54(4):1182–91. PubMed PMID: WOS:000089317900010. PubMed
Münzbergová Z. Ploidy level interacts with population size and habitat conditions to determine the degree of herbivory damage in plant populations. Oikos. 2006;115(3):443–52. doi: 10.1111/j.2006.0030–1299.15286.x PubMed PMID: WOS:000242114200006. DOI
Schlaepfer DR, Edwards PJ, Billeter R. Why only tetraploid Solidago gigantea (Asteraceae) became invasive: a common garden comparison of ploidy levels. Oecologia. 2010;163(3):661–73. doi: 10.1007/s00442-010-1595-3 PubMed PMID: WOS:000278838000011. PubMed DOI
Münzbergová Z. No effect of ploidy level in plant response to competition in a common garden experiment. Biological Journal of the Linnean Society. 2007;92(2):211–9. doi: 10.1111/j.1095-8312.2007.00820.x PubMed PMID: WOS:000249562600002. DOI
Eliasova A, Münzbergová Z. Higher seed size and germination rate may favour autotetraploids of Vicia cracca L. (Fabaceae). Biological Journal of the Linnean Society. 2014;113(1):57–73. doi: 10.1111/bij.12318 PubMed PMID: WOS:000340585700005. PubMed DOI PMC
Baczek-Kwinta R, Koziel A, Seidler-Lozykowska K. Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions? Photosynthetica. 2011;49(1):87–97. doi: 10.1007/s11099-011-0013-3 PubMed PMID: WOS:000290319600011. DOI
Chandra A, Dubey A. Assessment of ploidy level on stress tolerance of Cenchrus species based on leaf photosynthetic characteristics. Acta Physiologiae Plantarum. 2009;31(5):1003–13. doi: 10.1007/s11738-009-0317-0 PubMed PMID: WOS:000269878700014. DOI
Li WD, Hu X, Liu JK, Jiang GM, Li O, Xing D. Chromosome doubling can increase heat tolerance in Lonicera japonica as indicated by chlorophyll fluorescence imaging. Biologia Plantarum. 2011;55(2):279–84. PubMed PMID: WOS:000293030600009.
Li WAB, Biswas DK, Xu H, Xu C, Wang X, Liu J, et al. Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Functional plant biology. 2009;36:1–10. PubMed
Na Y-W, Jeong H, Lee S-Y, Choi HG, Kim S-H, Rho IR. Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species. Horticulture Environment and Biotechnology. 2014;55(4):280–6. doi: 10.1007/s13580-014-0006-9 PubMed PMID: WOS:000341829600004. DOI
Guo W, Yang J, Sun XD, Chen GJ, Yang YP, Duan YW. Divergence in eco-physiological responses to drought mirrors the distinct distribution of Chamerion angustifolium cytotypes in the Himalaya-Hengduan mountains region. Frontiers in Plant Science. 2016;7 doi: 10.3389/fpls.2016.01329 PubMed PMID: WOS:000382284000001. PubMed DOI PMC
Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman C, Raskin E, Mitchell-Olds T. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist. 2012;193(3):797–805. doi: 10.1111/j.1469-8137.2011.03988.x PubMed PMID: WOS:000298984900025. PubMed DOI PMC
Cai ZQ. Shade delayed flowering and decreased photosynthesis, growth and yield of Sacha Inchi (Plukenetia volubilis) plants. Industrial Crops and Products. 2011;34(1):1235–7. doi: 10.1016/j.indcrop.2011.03.021 PubMed PMID: WOS:000293320100064. DOI
Mraz P, Tarbush E, Mueller-Schaerer H. Drought tolerance and plasticity in the invasive knapweed Centaurea stoebe s.l. (Asteraceae): effect of populations stronger than those of cytotype and range. Annals of Botany. 2014;114(2):289–99. doi: 10.1093/aob/mcu105 PubMed PMID: WOS:000340434200009. PubMed DOI PMC
Gibson DJ. Grasses and Grassland Ecology. United Kingdom: Oxford University Press; 2009.
Givnish TJ. Adaptation to sun and shade—a whole-plant perspective. Australian Journal of Plant Physiology. 1988;15(1–2):63–92. PubMed PMID: WOS:A1988P516800005.
Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends in Plant Science. 2000;5(5):187–8. doi: 10.1016/s1360-1385(00)01625-3 PubMed PMID: WOS:000086954500002. DOI
Lawlor DW. Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP. Annals of Botany. 2002;89:871–85. doi: 10.1093/aob/mcf110 PubMed PMID: WOS:000176402100009. PubMed DOI PMC
Flexas J, Medrano H. Drought-inhibition of photosynthesis in C-3 plants: Stomatal and non-stomatal limitations revisited. Annals of Botany. 2002;89(2):183–9. doi: 10.1093/aob/mcf027 PubMed PMID: WOS:000174774300006. PubMed DOI PMC
Razmjoo K, Heydarizadeh P, Sabzalian MR. Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. International Journal of Agricultureand Biology. 2008;10(4):451–4.
Alavi-Samani SM, Pirbalouti AG, Kachouei MA, Hamedi B. The influence of reduced irrigation on herbage, essential oil yield and quality of Thymus vulgaris and Thymus daenensis Journal of Herbal Drugs. 2013;4(3):109–13.
Devkota A, Jha PK. Influence of water stress on growth and yield of Centella asiatica. International Agrophysics. 2011;25(3):211–4. PubMed PMID: WOS:000295429700002.
Jiang HF, Egli DB. Shade induced changes in flower and pod number and flower and fruit abscission in soybean. Agronomy Journal. 1993;85(2):221–5. PubMed PMID: WOS:A1993LA80200009.
Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, Vít P, et al. Towards resolving the Knautia arvensis agg. (Dipsacaceae) Puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Annals of Botany. 2009;103:963–74. doi: 10.1093/aob/mcp016 PubMed DOI PMC
Štěpánek J. Knautia L.—chrastavec In: Slavík B, editor. Květena České republiky, svazek 6: Academia, Praha; 1997. p. 543–54.
Ellenberg H, Weber H, Düll R, Wirth V, Werner W, Paulissen D. Zeigerwerte der gefassplanzen mitteleuropas. 3 ed. Gottingen: Erich Goltze KG; 1992.
Mandakova T, Münzbergová Z. Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech Republic. Annals of Botany. 2006;98(4):845–56. doi: 10.1093/aob/mcl165 PubMed PMID: WOS:000240925800013. PubMed DOI PMC
Černá L, Münzbergová Z. Conditions in home and transplant soils have differential effects on the performance of diploid and allotetraploid Anthericum species. Plos One. 2015;10(1). doi: 10.1371/journal.pone.0116992 PubMed PMID: WOS:000348205300046. PubMed DOI PMC
Strauss AJ, Kruger GHJ, Strasser RJ, Van Heerden PDR. Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environmental and Experimental Botany. 2006;56(2):147–57. doi: 10.1016/j.envexpbot.2005.01.011 PubMed PMID: WOS:000236755500003. DOI
Oukarroum A, El Madidi S, Schansker G, Strasser RJ. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany. 2007;60(3):438–46. doi: 10.1016/j.envexpbot.2007.01.002 PubMed PMID: WOS:000248365700019. DOI
Zivcak M, Brestic M, Olsovska K, Slamka P. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil and Environment. 2008;54(4):133–9. PubMed PMID: WOS:000255153700001.
Jedmowski C, Ashoub A, Brueggemann W. Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. Acta Physiologiae Plantarum. 2013;35(2):345–54. doi: 10.1007/s11738-012-1077-9 PubMed PMID: WOS:000315034900005. DOI
Strasser RJ, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples In: Yunus M, Pathre U, Mohanty P, editors. Probing photosynthesis: Mechanism, regulation and adaptation. London: Taylor and Francis; 2000. p. 445–83.
Stirbet A, Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B-Biology. 2011;104(1–2):236–57. doi: 10.1016/j.jphotobiol.2010.12.010 PubMed PMID: WOS:000292066000025. PubMed DOI
Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee, et al. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochimica Et Biophysica Acta-Bioenergetics. 2010;1797(8):1428–38. doi: 10.1016/j.bbabio.2010.02.002 PubMed PMID: WOS:000279888700009. PubMed DOI
Wellburn AR. The spectral determination of chlorophyll-a and chlorophhyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology. 1994;144(3):307–13. PubMed PMID: WOS:A1994PL97900009.
R Development Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2011.
Dunn O. Comparisons Among Means. Journal of the American Statistical Association. 1961;56:52–64.
Rice WR. Analyzing tables of statistical tests. Evolution. 1989;43(1):223–5. doi: 10.1111/j.1558-5646.1989.tb04220.x PubMed PMID: WOS:A1989R828900018. PubMed DOI
Gotelli N, Ellison A. A Primer of Ecological Statistics. Sunderland, USA: Sinauer Associates; 2004.
Münzbergová Z, Hadincová V, Skálová H, Vandvik V. Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. Journal of Ecology. 2017: doi: 10.1111/1365-2745.12735 DOI
Valladares F, Sanchez-Gomez D, Zavala MA. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology. 2006;94(6):1103–16. doi: 10.1111/j.1365-2745.2006.01176.x PubMed PMID: WOS:000240920400007. DOI
Mishra MK. Stomatal characteristics at different ploidy levels in Coffea L. Annals of Botany. 1997;80(5):689–92. doi: 10.1006/anbo.1997.0491 PubMed PMID: WOS:A1997YE49100014. DOI
Beck SL, Dunlop RW, Fossey A. Stomatal length and frequency as a measure of ploidy level in black wattle, Acacia mearnsii (de Wild). Botanical Journal of the Linnean Society. 2003;141(2):177–81. doi: 10.1046/j.1095-8339.2003.00132.x PubMed PMID: WOS:000181267900003. DOI
Yang XM, Cao ZY, An LZ, Wang YM, Fang XW. In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica. 2006;152(2):217–24. doi: 10.1007/s10681-006-9203-7 PubMed PMID: WOS:000242606500008. DOI
Khazaei H, Monneveux P, Shao HB, Mohammady S. Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genetic Resources and Crop Evolution. 2010;57(2):307–14. doi: 10.1007/s10722-009-9471-x PubMed PMID: WOS:000273852400013. DOI
Majdi M, Karimzadeh G, Malboobi MA, Omidbaigi R, Mirzaghaderi G. Induction of tetraploidy to feverfew (Tanacetum parthenium Schulz-Bip.): morphological, physiological, cytological, and phytochemical changes. Hortscience. 2010;45(1):16–21. PubMed PMID: WOS:000273824900003.
Van Laere K, Franca SC, Vansteenkiste H, Van Huylenbroeck J, Steppe K, Van Labeke MC. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiologiae Plantarum. 2011;33(4):1149–56. doi: 10.1007/s11738-010-0643-2 PubMed PMID: WOS:000291600200011. DOI
del Pozo JC, Ramirez-Parra E. Whole genome duplications in plants: an overview from Arabidopsis. Journal of Experimental Botany. 2015;66(22):6991–7003. doi: 10.1093/jxb/erv432 PubMed PMID: WOS:000367815000003. PubMed DOI
Pavlíková Z, Paštová L, Münzbergová Z. Synthetic polyploids in Vicia cracca: methodology, effects on plant performance and aneuploidy Plant Systematics and Evolution. 2017. doi: 10.1007/s00606-017-1435-6 DOI
Münzbergová Z. Colchicine application significantly affects plant performance in the second generation of synthetic polyploids and its effects vary between populations. Annals of Botany. 2017. PubMed PMC
Zhang L, Xu H, Yang JC, Li WD, Jiang GM, Li YG. Photosynthetic characteristics of diploid honeysuckle (Lonicera japonica Thunb.) and its autotetraploid cultivar subjected to elevated ozone exposure. Photosynthetica. 2010;48(1):87–95. doi: 10.1007/s11099-010-0012-9 PubMed PMID: WOS:000278158500012. DOI
Abdoli M, Moieni A, Badi HN. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiologiae Plantarum. 2013;35(7):2075–83. doi: 10.1007/s11738-013-1242-9 PubMed PMID: WOS:000320561500005. DOI
Allario T, Brumos J, Colmenero-Flores JM, Tadeo F, Froelicher Y, Talon M, et al. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. Journal of Experimental Botany. 2011;62(8):2507–19. PubMed PMID: WOS:000290813300008. doi: 10.1093/jxb/erq467 PubMed DOI
Nuismer SL, Cunningham BM. Selection for phenotypic divergence between diploid and autotetraploid Heuchera grossulariifolia. Evolution. 2005;59(9):1928–35. doi: 10.1554/04-715.1 PubMed PMID: WOS:000232259300007. PubMed DOI
Münzbergová Z, Raabova J, Castro S, Pankova H. Biological flora of Central Europe: Aster amellus L. (Asteraceae). Perspectives in Plant Ecology Evolution and Systematics. 2011;13(2):151–62. doi: 10.1016/j.ppees.2011.03.002 PubMed PMID: WOS:000292473300007. DOI
Garbutt K, Bazzaz F. Leaf demography, flower production and biomass of diploid and tetraploid populations of Phlox drummondii Hook on a soil-moisture gradient. New Phytologist. 1983;93(1):129–41. doi: 10.1111/j.1469-8137.1983.tb02698.x PubMed PMID: WOS:A1983QE37500013. DOI
Kik C, Linders TE, Bijlsma R. Ploidy level and somatic chromosome number variation in Agrostis stolonifera. Acta Botanica Neerlandica. 1993;42(1):73–80. PubMed PMID: WOS:A1993KT26700006.
Eliášová A, Münzbergová Z. Factors influencing distribution and local coexistence of diploids and tetraploids of Vicia cracca: inferences from a common garden experiment. Journal of Plant Research. 2017. doi: 10.1007/s10265-017-0925-5 PubMed DOI
Münzbergová Z, Skuhrovec J, Marsik P. Large differences in the composition of herbivore communities and seed damage in diploid and autotetraploid plant species. Biological Journal of the Linnean Society. 2015;115(2):270–87. doi: 10.1111/bij.12482 PubMed PMID: WOS:000353508000003. DOI
Ramsey J, Ramsey TS. Ecological studies of polyploidy in the 100 years following its discovery. Philosophical Transactions of the Royal Society B-Biological Sciences. 2014;369(1648):20 doi: 10.1098/rstb.2013.0352 PubMed PMID: WOS:000338397100012. PubMed DOI PMC
Buggs RJA, Pannell JR. Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evolution. 2007;61(1):125–40. doi: 10.1111/j.1558-5646.2007.00010.x PubMed PMID: WOS:000244285000011. PubMed DOI
Hulber K, Berger A, Gilli C, Hofbauer M, Patek M, Schneeweiss GM. No evidence for a role of competitive capabilities of adults in causing habitat segregation of diploid and hexaploid Senecio carniolicus (Asteracaeae). Alpine Botany. 2011;121(2):123–7. doi: 10.1007/s00035-011-0091-7 PubMed PMID: WOS:000300100700006. PubMed DOI PMC
Sultan SE, Bazzaz FA. Phenotypic plasticity in Polygonum persicaria. 1. Diversity and uniformity in genotypic norms of reaction to light. Evolution. 1993;47(4):1009–31. doi: 10.1111/j.1558-5646.1993.tb02132.x PubMed PMID: WOS:A1993NE37800002. PubMed DOI
Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science. 2000;5(12):537–42. doi: 10.1016/s1360-1385(00)01797-0 PubMed PMID: WOS:000166393400019. PubMed DOI
Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, et al. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research. 2008;105(1–2):1–14. doi: 10.1016/j.fcr.2007.07.004 PubMed PMID: WOS:000252464800001. DOI
Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate