Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24232383
PubMed Central
PMC3864723
DOI
10.1093/aob/mct252
PII: mct252
Knihovny.cz E-zdroje
- Klíčová slova
- Autopolyploidy, F-statistics, Vicia cracca, allozymes, artificial pollination, fixed heterozygosity, genetic differentiation, genetic diversity, heterozygosity, inbreeding depression, mating system, meiotic chromosomes,
- MeSH
- alely MeSH
- diploidie * MeSH
- genetická variace * MeSH
- heterozygot MeSH
- izoenzymy genetika MeSH
- opylení genetika MeSH
- populační genetika * MeSH
- samooplození genetika MeSH
- semena rostlinná genetika MeSH
- tetraploidie * MeSH
- vikev genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
- Slovenská republika MeSH
- Názvy látek
- izoenzymy MeSH
BACKGROUND AND AIMS: Despite the great importance of autopolyploidy in the evolution of angiosperms, relatively little attention has been devoted to autopolyploids in natural polyploid systems. Several hypotheses have been proposed to explain why autopolyploids are so common and successful, for example increased genetic diversity and heterozygosity and the transition towards selfing. However, case studies on patterns of genetic diversity and on mating systems in autopolyploids are scarce. In this study allozymes were employed to investigate the origin, population genetic diversity and mating system in the contact zone between diploid and assumed autotetraploid cytotypes of Vicia cracca in Central Europe. METHODS: Four enzyme systems resolved in six putative loci were investigated in ten diploid, ten tetraploid and five mixed-ploidy populations. Genetic diversity and heterozygosity, partitioning of genetic diversity among populations and cytotypes, spatial genetic structure and fixed heterozygosity were analysed. These studies were supplemented by a pollination experiment and meiotic chromosome observation. KEY RESULTS AND CONCLUSIONS: Weak evidence of fixed heterozygosity, a low proportion of unique alleles and genetic variation between cytotypes similar to the variation among populations within cytotypes supported the autopolyploid origin of tetraploids, although no multivalent formation was observed. Tetraploids possessed more alleles than diploids and showed higher observed zygotic heterozygosity than diploids, but the observed gametic heterozygosity was similar to the value observed in diploids and smaller than expected under panmixis. Values of the inbreeding coefficient and differentiation among populations (ρST) suggested that the breeding system in both cytotypes of V. cracca is mixed mating with prevailing outcrossing. The reduction in seed production of tetraploids after selfing was less than that in diploids. An absence of correlation between genetic and geographic distances and high differentiation among neighbouring tetraploid populations supports the secondary contact hypothesis with tetraploids of several independent origins in Central Europe. Nevertheless, the possibility of a recent in situ origin of tetraploids through a triploid bridge in some regions is also discussed.
Zobrazit více v PubMed
Aarssen LW, Hall IV, Jensen KIN. The biology of Canadian weeds. 76. Vicia angustifolia L., V. cracca L., V. sativa L., V. tetrasperma (L.) Schreb. and V. villosa Roth. Canadian Journal of Plant Science. 1986;66:711–737.
Abbott RJ, Lowe AJ. Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboracensis in the British Isles. Biological Journal of the Linnean Society. 2004;82:467–474.
Ainouche ML, Baumel A, Salmon A. Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biological Journal of the Linnean Society. 2004;82:475–484.
Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S. Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Annals of Botany. 2009;104:965–973. PubMed PMC
Barringer BC. Polyploidy and self-fertilization in flowering plants. American Journal of Botany. 2007;94:1527–1533. PubMed
Berglund A-BN, Saura A, Westergergh A. Electrophoretic evidence for disomic inheritance and allopolyploid origin of the octoploid Cerastium alpinum (Caryophyllaceae) Journal of Heredity. 2006;97:296–302. PubMed
Bever JD, Felber F. The theoretical population genetics of autopolyploidy. In: Antonovics J, Futuyma D, editors. Oxford surveys in evolutionary biology. Oxford: Oxford University Press; 1992. pp. 185–217.
Buyukkartal HNB. Causes of low seed set in the natural tetraploid Trifolium pratense L. (Fabaceae) African Journal of Biotechnology. 2008;7:1240–1249.
Castro S, Loureiro J, Procházka T, Münzbergová Z. Cytotype distribution at a diploid-hexaploid contact zone in Aster amellus (Asteraceae) Annals of Botany. 2012;110:1047–1055. PubMed PMC
Chrtková A. Vicia L. In: Slavik B, editor. Květena České republiky 4. Prague: Academia; 1995. pp. 386–414.
Chrtková-Žertová A. Cytotaxonomic study of Vicia cracca complex 1. Czechoslovak taxa. Folia Geobotanica et Phytotaxonomica. 1973;8:67–93.
Van Dijk P, Bakx-Schotman T. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media. Molecular Ecology. 1997;6:345–352.
Van Dijk P, Hartog MV, Van Delden W. Single cytotype areas in autopolyploid Plantago media L. Biological Journal of the Linnean Society. 1992;46:315–331.
Duchoslav M, Šafářová L, Krahulec F. Complex distribution patterns, ecology and coexistence of ploidy levels of Allium oleraceum (Alliaceae) in the Czech Republic. Annals of Botany. 2010;105:719–735. PubMed PMC
Dvořák F, Dadáková B, Grüll F. Studies of the morphology of chromosomes of some selected species. Folia Geobotanica et Phytotaxonomica. 1977;12:343–375.
Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M. Genome size in natural and synthetic autopolyploids and in natural segmental allopolyploid of several Triticeae species. Genome. 2009;52:275–285. PubMed
Eliášová A. Evaluation of cytotype and morphological variability of Vicia cracca L. (Fabaceae) in central Europe. Master's Thesis, Charles University in Prague, Czech Republic. 2008
Galloway LF, Etterson JR. Inbreeding depression in an autotetraploid herb: a three cohort field study. New Phytologist. 2007;173:383–392. PubMed
Halverson K, Heard SB, Nason JD, Stireman JO. Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae) American Journal of Botany. 2008;95:50–58. PubMed
Hamrick JL, Godt MJW. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London, Biological Sciences. 1996;351:1291–1298.
Hanelt P, Mettin D. Biosystematics of the genus Vicia L. (Leguminosae) Annual Review of Ecology and Systematics. 1989;20:199–223.
Hardy OJ, Vekemans X. Patterns of allozyme variation in diploid and tetraploid Centaurea jacea at different spatial scales. Evolution. 2001;55:943–954. PubMed
Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes. 2002;2:618–620.
Hardy OJ, De Loose M, Vekemans X, Meerts P. Allozyme segregation and inter-cytotype reproductive barriers in the polyploid complex Centaurea jacea. Heredity. 2001;87:136–145. PubMed
Husband BC, Schemske DW. The effect of inbreeding in diploid and tetraploid populations of Epilobium angustifolium (Onagraceae): implications for the genetic basis of inbreeding depression. Evolution. 1997;51:737–746. PubMed
Jaaska V. Isozyme variation and phylogenetic relationships in Vicia subgenus Cracca (Fabaceae) Annals of Botany. 2005;96:1085–1096. PubMed PMC
Jiao Y, Wickett NJ, Ayyampalayam S, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100. PubMed
Johnson M, Husband BC, Burton TL. Habitat differentiation in diploid and tetraploid Galax urceolata (Diapensiaceae) International Journal of Plant Sciences. 2003;164:703–710.
Klebesadel LJ. Birdvetch. Forage crop, ground cover, ornamental, or weed? Agroborealis. 1980;12:46–49.
Kolář F, Štech M, Trávníček P, et al. Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Annals of Botany. 2009;103:963–974. PubMed PMC
Levin D. Minority cytotype exclusion in local plant populations. Taxon. 1975;24:35–43.
López-Pujol J, Orellana MR, Bosch M, Simon J, Blanché C. Low genetic diversity and allozymic evidence for autopolyploidy in the tetraploid Pyrenean endemic larkspur Delphinium montanum (Ranunculaceae) Botanical Journal of the Linnean Society. 2007;155:211–222.
Maceira NO, Jacquard P, Lumaret R. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytologist. 1993;124:321–328. PubMed
Mahy G, Bruederle LP, Connors B, Van Hofwegen M, Vorsa N. Allozyme evidence for genetic autopolyploidy and high genetic diversity in tetraploid cranberry, Vaccinium oxycoccos (Ericaceae) American Journal of Botany. 2000;87:1882–1889. PubMed
Mandák B, Bímová K, Plačková I, Mahelka V, Chrtek J. Loss of genetic variation in geographically marginal populations of Atriplex tatarica (Chenopodiaceae) Annals of Botany. 2005;96:901–912. PubMed PMC
Mandáková T, Münzbergová Z. Morphometric and genetic differentiation of diploid and hexaploid populations of Aster amellus agg. in a contact zone. Plant Systematics and Evolution. 2008;274:155–170.
MathSoft Inc. Seattle, USA: Data Analysis Products Division, MathSoft; 1999. S-Plus 2000 Professional Release 2.
Meirmans PG, Van Tienderen PH. The effects of inheritance in tetraploids on genetic diversity and population divergence. Heredity. 2013;110:131–137. PubMed PMC
Moody ME, Mueller LD, Soltis DE. Genetic variation and random drift in autotetraploid populations. Genetics. 1993;134:649–657. PubMed PMC
Mráz P, Šingliarová B, Urfus T, Krahulec F. Cytogeography of Pilosella officinarum (Compositae): altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Annals of Botany. 2008;101:59–71. PubMed PMC
Mráz P, Garcia-Jacas N, Gex-Fabry E, Susanna A, Barres L, Müller-Schärer H. Allopolyploid origin of highly invasive Centaurea stoebe s.l. (Asteraceae) Molecular Phylogenetics and Evolution. 2012;62:612–623. PubMed
Münzbergová Z, Surinová M, Castro S. Absence of gene flow between diploids and hexaploids of Aster amellus at multiple spatial scales. Heredity. 2013;110:123–130. PubMed PMC
Nei M. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the USA. 1973;70:3321–3323. PubMed PMC
Ness BD, Soltis DE, Soltis PS. Autopolyploidy in Heuchera micrantha (Saxifragaceae) American Journal of Botany. 1989;76:614–626. PubMed
Oswald BP, Nuismer SL. Neopolyploidy and pathogen resistance. Proceedings of the Royal Society of London, Series B. Biological Sciences. 2007;274:2393–2397. PubMed PMC
Ozimec B, Husband BC. Effect of recurrent selfing on inbreeding depression and mating system evolution in an autopolyploid plant. Evolution. 2011;65:2038–2049. PubMed
Parisod C, Holderegger R, Brochmann C. Evolutionary consequences of autopolyploidy. New Phytologist. 2010;186:5–17. PubMed
Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K. The flowering world: a tale of duplications. Trends in Plant Science. 2009;14:680–688. PubMed
Petit C, Bretagnolle F, Felber F. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends in Ecology and Evolution. 1999;14:306–311. PubMed
Qu LP, Hancock JF, Whallon JH. Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowi and autotetraploid V. corymbosum (Ericaceae) American Journal of Botany. 1998;85:698–703. PubMed
Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics. 1998;29:467–501.
Ramsey J, Schemske DW. Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics. 2002;33:589–639.
Rausch JH, Morgan MT. The effect of self-fertilization, inbreeding depression, and population size on autopolyploid establishment. Evolution. 2005;59:1867–1875. PubMed
Rodriguez DJ. A model for the establishment of polyploidy in plants. American Naturalist. 1996;147:33–46.
Ronfort J, Jenczewski E, Bataillon T, Rousset F. Analysis of population structure in autotetraploid species. Genetics. 1998;150:921–930. PubMed PMC
Roose ML, Gottlieb LD. Genetic and biochemical consequences of polyploidy in Tragopogon. Evolution. 1976;30:818–830. PubMed
Rosquist G. Reproductive biology in diploid Anthericum ramosum and tetraploid A. liliago (Anthericaceae) Oikos. 2001;92:143–152.
Roti-Michelozzi G. Biosystematic investigations on north western Italian populations of the Vicia cracca aggregate: preliminary observations. Webbia. 1984;38:815–827.
Rousi A. Cytotaxonomical studies on Vicia cracca L, V. tenuifolia Roth. I. Chromosome numbers and karyotype evolution. Hereditas. 1961;47:81–110.
Rousi A. Cytotaxonomical studies on Vicia cracca L, V. tenuifolia Roth. II. Meiosis. Hereditas. 1962;48:390–408.
Rousi A. Cytotaxonomical studies on Vicia cracca L, V. tenuifolia Roth. III. The relation between karyotype and morphology. Annales Botanici Fennici. 1973;10:89–96.
Segraves KA, Thompson JN, Soltis DE, Soltis PS. Multiple origins of polyploidy and the geographic structure of Heuchera grossulariifolia. Molecular Ecology. 1999;8:253–262.
Shannon CE. A mathematical theory of communication. Bell System Technical Journal. 1948;27(379–423):623–656.
Šingliarová B, Hodalová I, Mráz P. Biosystematic study of the diploid-polyploid Pilosella alpicola group with variation in breeding system: patterns and processes. Taxon. 2011;60:450–470.
Soltis DE, Soltis PS. Molecular data and the dynamic nature of polyploidy. Critical Reviews in Plant Sciences. 1993;12:243–273.
Soltis PS, Soltis DE. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences of the USA. 2000;97:7051–7057. PubMed PMC
Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA, Mavrodiev E. Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic and genetic comparisons. Biological Journal of the Linnean Society. 2004;82:485–501.
Soltis DE, Soltis PS, Schemske DW, et al. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon. 2007;56:13–30.
Soltis DE, Albert VA, Leebens-Mack J, et al. Polyploidy and angiosperm diversification. American Journal of Botany. 2009;96:336–348. PubMed
StatSoft, Inc. STATISTICA (data analysis software system), version 7. 2004 www.statsoft.com .
Stebbins GL. Polyploidy, hybridization, and the invasion of new habitats. Annals of the Missouri Botanical Garden. 1985;72:824–832.
Stuessy TF, Weiss-Schneeweiss H, Keil DJ. Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae) American Journal of Botany. 2004;91:889–898. PubMed
Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P. Complex distribution patterns of di-, tetra- and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae) American Journal of Botany. 2007;94:1391–1401. PubMed
Sveshnikova IN. Some aspects of morphogenesis in perennial forms of Vicia. Biologicheskii Zhurnal. 1937;6:949–970.
Trávníček P, Eliášová A, Suda J. The distribution of cytotypes of Vicia cracca in Central Europe: the changes that have occurred over the last four decades. Preslia. 2010;82:149–163.
Trávníček P, Kubátová B, Čurn V, et al. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Annals of Botany. 2011;107:77–87. PubMed PMC
Vallejos CE. Enzyme activity staining. In: Tanksley SD, Orton TJ, editors. Isozymes in plant genetics and breeding. Part A. Amsterdam: Elsevier; 1983. pp. 469–515.
Weeden NF, Wendel JF. Genetics of plant isozymes. In: Soltis DS, Soltis PS, editors. Isozymes in plant biology. Advances in plant sciences series. Vol. 4. Portland, OR: Dioscorides Press; 1989.
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed
Weiss H, Dobes C, Schneeweiss GM, Greimler J. Occurrence of tetraploid and hexaploid cytotypes between and within populations in Dianthus sect. Plumaria (Caryophyllaceae) New Phytologist. 2002;156:85–94.
Wright S. Evolution in Mendelian populations. Genetics. 1951;16:97–159. PubMed PMC
Zhang X, Mosjidis JA. Rapid prediction of mating system of Vicia species. Crop Science. 1998;38:872–875.
Žertová A. Prague: Novitates Botanicae Horti Botanici Universitatis Carolinae Pragensis; 1962. Vicia oreophila, montane Art aus der Gruppe Vicia cracca L; pp. 51–53.
Contrasting effects of ploidy level on seed production in a diploid tetraploid system