Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32318088
PubMed Central
PMC7154175
DOI
10.3389/fpls.2020.00400
Knihovny.cz E-zdroje
- Klíčová slova
- Balsaminaceae, antioxidants, carotenoids, elevational gradients, genotype × environment interaction, growth chamber experiment, phylogenetic constrains, xanthophyll cycle,
- Publikační typ
- časopisecké články MeSH
Knowledge of the relationship between environmental conditions and species traits is an important prerequisite for understanding determinants of community composition and predicting species response to novel climatic conditions. Despite increasing number of studies on this topic, our knowledge on importance of genetic differentiation, plasticity and their interactions along larger sets of species is still limited especially for traits related to plant ecophysiology. We studied variation in traits related to growth, leaf chemistry, contents of photosynthetic pigments and activity of antioxidative enzymes, stomata morphology and photosynthetic activity across eight Impatiens species growing along altitudinal gradients in Himalayas cultivated in three different temperature regimes and explored effects of among species phylogenetic relationships on the results. Original and target climatic conditions determine trait values in our system. The traits are either highly plastic (e.g., APX, CAT, plant size, neoxanthin, β-carotene, chlorophyll a/b, DEPSC) or are highly differentiated among populations (stomata density, lutein production). Many traits show strong among population differentiation in degree of plasticity and direction in response to environmental changes. Most traits indicate that the species will profit from the expected warming. This suggests that different processes determine the values of the different traits and separating the importance of genetic differentiation and plasticity is crucial for our ability to predict species response to future climate changes. The results also indicate that evolution of the traits is not phylogenetically constrained but including phylogenetic information into the analysis may improve our understanding of the trait-environment relationships as was apparent from the analysis of SLA.
Department of Botany Faculty of Science Charles University Prague Czechia
Department of Population Ecology Institute of Botany Czech Academy of Sciences Prague Czechia
Institute of Experimental Botany Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Aasamaa K., Sober A. (2011). Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environ. Exp. Bot. 71 72–78. 10.1016/j.envexpbot.2010.10.013 DOI
Ackerly D. (2009). Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. U.S.A. 106 19699–19706. 10.1073/pnas.0901635106 PubMed DOI PMC
Ackerly D. D., Donoghue M. J. (1995). Phylogeny and ecology reconsidered. J. Ecol. 83 730–733. 10.2307/2261642 DOI
Ackerly D. D., Nyffeler R. (2004). Evolutionary diversification of continuous traits: phylogenetic tests and application to seed size in the California flora. Evol. Ecol. 18 249–272. 10.1023/b:evec.0000035031.50566.60 DOI
Acuna-Rodriguez I. S., Torres-Diaz C., Hereme R., Molina-Montenegro M. A. (2017). Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient. PeerJ 5:e3718. 10.7717/peerj.3718 PubMed DOI PMC
Akiyama S., Ohba H., Wakabayashi M. (1991). “Taxonomic notes of the east Himalayan species of impatiens. Studies of Himalayan Impatiens (Balsaminaceae),” in The Himalayan Plants, eds Ohba H., Malla S. M. (Tokyo: University of Tokyo Press; ), 66–94.
Anderson J. T., Gezon Z. J. (2015). Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Glob. Change Biol. 21 1689–1703. 10.1111/gcb.12770 PubMed DOI
Anderson J. T., Inouye D. W., McKinney A. M., Colautti R. I., Mitchell-Olds T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B Biol. Sci. 279 3843–3852. 10.1098/rspb.2012.1051 PubMed DOI PMC
Ashraf M., Harris P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51 163–190. 10.1007/s11099-013-0021-6 PubMed DOI
Baker N. R., Rosenqvist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55 1607–1621. 10.1093/jxb/erh196 PubMed DOI
Barak R. S., Lichtenberger T. M., Wellman-Houde A., Kramer A. T., Larkin D. J. (2018). Cracking the case: seed traits and phylogeny predict time to germination in prairie restoration species. Ecol. Evol. 8 5551–5562. 10.1002/ece3.4083 PubMed DOI PMC
Bawa K. S., Ingty T., Revell L. J., Shivaprakash K. N. (2019). Correlated evolution of flower size and seed number in flowering plants (monocotyledons). Ann. Bot. 123 181–190. 10.1093/aob/mcy154 PubMed DOI PMC
Beaucham C., Fridovic I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 276–287. 10.1016/0003-2697(71)90370-8 PubMed DOI
Beaulieu J. M., Leitch I. J., Patel S., Pendharkar A., Knight C. A. (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179 975–986. 10.1111/j.1469-8137.2008.02528.x PubMed DOI
Benomar L., Lamhamedi M. S., Rainville A., Beaulieu J., Bousquet J., Margolis H. A. (2016). Genetic adaptation vs. Ecophysiological plasticity of photosynthetic-related traits in young Picea glauca trees along a regional climatic gradient. Front. Plant Sci. 7:48. 10.3389/fpls.2016.00048 PubMed DOI PMC
Bertolino L. T., Caine R. S., Gray J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 10:225. 10.3389/fpls.2019.00225 PubMed DOI PMC
Bowler C., Fluhr R. (2000). The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5 241–246. 10.1016/s1360-1385(00)01628-9 PubMed DOI
Bowman G., Perret C., Hoehn S., Galeuchet D. J., Fischer M. (2008). Habitat fragmentation and adaptation: a reciprocal replant-transplant experiment among 15 populations of Lychnis flos-cuculi. J. Ecol. 96 1056–1064. 10.1111/j.1365-2745.2008.01417.x DOI
Bradford M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1006/abio.1976.9999 PubMed DOI
Bruelheide H., Dengler J., Purschke O., Lenoir J., Jiménez-Alfaro B., Hennekens S. M., et al. (2018). Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2 1906–1917. 10.1038/s41559-018-0699-8 PubMed DOI
Campbell D. R., Sosenski P., Raguso R. A. (2019). Phenotypic plasticity of floral volatiles in response to increasing drought stress. Ann. Bot. 123 601–610. 10.1093/aob/mcy193 PubMed DOI PMC
Casson S. A., Franklin K. A., Gray J. E., Grierson C. S., Whitelam G. C., Hetherington A. M. (2009). phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr. Biol. 19 229–234. 10.1016/j.cub.2008.12.046 PubMed DOI
Chance B., Maehly A. C. (1955). Assay of catalases and peroxidases. Methods Enzymol. 2 764–775. 10.1016/s0076-6879(55)02300-8 PubMed DOI
Chapin F. S., Shaver G. R. (1996). Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77 822–840. 10.2307/2265504 DOI
Chapman D. S., Gray A. (2012). Complex interactions between the wind and ballistic seed dispersal in Impatiens glandulifera (Royle). J. Ecol. 100 874–883. 10.1111/j.1365-2745.2012.01977.x DOI
Chaves M. M., Costa J. M., Zarrouk O., Pinheiro C., Lopes C. M., Pereira J. S. (2016). Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? Plant Sci. 251 54–64. 10.1016/j.plantsci.2016.06.015 PubMed DOI
Chen Y. E., Cui J. M., Su Y. Q., Zhang C. M., Ma J., Zhang Z. W., et al. (2017). Comparison of phosphorylation and assembly of photosystem complexes and redox homeostasis in two wheat cultivars with different drought resistance. Sci. Rep. 7:12718. 10.1038/s41598-017-13145-1 PubMed DOI PMC
Chomicki G., Coiro M., Renner S. S. (2017). Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. Ann. Bot. 120 855–891. 10.1093/aob/mcx113 PubMed DOI PMC
Dall’Osto L., Cazzaniga S., North H., Marion-Poll A., Bassi R. (2007). The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19 1048–1064. 10.1105/tpc.106.049114 PubMed DOI PMC
Das K., Roychoudhury A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53 10.3389/fenvs.2014.00053 DOI
Datta A., Kuhn I., Ahmad M., Michalski S., Auge H. (2017). Processes affecting altitudinal distribution of invasive Ageratina adenophora in western Himalaya: the role of local adaptation and the importance of different life-cycle stages. PLoS One 12:e0187708. 10.1371/journal.pone.0187708 PubMed DOI PMC
DemmigAdams B., Adams W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1 21–26. 10.1016/s1360-1385(96)80019-7 DOI
Desdevises Y., Legendre P., Azouzi L., Morand S. (2003). Quantifying phylogenetically structured environmental variation. Evolution 57 2647–2652. 10.1111/j.0014-3820.2003.tb01508.x PubMed DOI
Diaz S., Hodgson J. G., Thompson K., Cabido M., Cornelissen J. H. C., Jalili A., et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15 295–304. 10.1111/j.1654-1103.2004.tb02266.x DOI
Diniz J. A. F., De Sant’ana C. E. R., Bini L. M. (1998). An eigenvector method for estimating phylogenetic inertia. Evolution 52 1247–1262. 10.2307/2411294 PubMed DOI
Dostálek T., Münzbergová Z., Plačková I. (2010). Genetic diversity and its effect on fitness in an endangered plant species, Dracocephalum austriacum L. Conserv. Genet. 11 773–783. 10.1007/s10592-009-9879-z DOI
Dostálek T., Rokaya B. M., Maršík P., Rezek J., Skuhrovec J., Pavela R., et al. (2016). Trade-off among different anti-herbivore defence strategies along an altitudinal gradient. AoB Plants 8:lw026. 10.1093/aobpla/plw026 PubMed DOI PMC
Dostálek T., Rokaya M. B., Münzbergová Z. (2018). Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics. PLoS One 13:e0209149. 10.1371/journal.pone.0209149 PubMed DOI PMC
Dostálek T., Rokaya M. B., Münzbergová Z. (2019). Effects of temperature of plant cultivation on plant palatability modify species response to novel climate. bioRxiv 841148 10.1101/841148 DOI
Dreesen F. E., De Boeck H. J., Janssens I. A., Nijs I. (2014). Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages. Biogeosciences 11 109–121. 10.5194/bg-11-109-2014 DOI
Dunn O. (1961). Comparisons among means. J. Am. Stat. Assoc. 56 52–64.
Ehmig M., Coiro M., Linder H. P. (2019). Ecophysiological strategy switch through development in heteroblastic species of Mediterranean ecosystems - an example in the African Restionaceae. Ann. Bot. 123 611–623. 10.1093/aob/mcy194 PubMed DOI PMC
Ehrenberger F., Gorbach S. (1973). Methoden der Organischen Elementar- und Purenanalyse. Weinheim: Verlag Chemie.
Ensminger I., Busch F., Huner N. P. A. (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol. Plant. 126 28–44. 10.1111/j.1399-3054.2006.00627.x PubMed DOI
Esteban R., Barrutia O., Artetxe U., Fernandez-Marin B., Hernandez A., Garcia-Plazaola J. I. (2015). Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytol. 206 268–280. 10.1111/nph.13186 PubMed DOI
Farrant J. M., Ruelland E. (2015). Plant signalling mechanisms in response to the environment. Environ. Exp. Bot. 114 1–3. 10.1016/j.envexpbot.2015.02.006 DOI
Felsenstein J. (1985). Phylogenies and the comparative method. Am. Nat. 125 1–15. 10.1086/284325 DOI
Fernandez-Marin B., Miguez F., Becerril J. M., Garcia-Plazaola J. I. (2011). Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. BMC Plant Biol. 11:181. 10.1186/1471-2229-11-181 PubMed DOI PMC
Figueroa J. A., Armesto J. J. (2001). Community-wide germination strategies in a temperate rainforest of Southern Chile: ecological and evolutionary correlates. Aust. J. Bot. 49 411–425. 10.1071/bt00013 DOI
Forster B., Pogson B. J., Osmond C. B. (2011). Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark. Plant Physiol. 156 393–403. 10.1104/pp.111.173369 PubMed DOI PMC
Foyer C. H., Vanacker H., Gomez L. D., Harbinson J. (2002). Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol. Biochem. 40 659–668. 10.1016/s0981-9428(02)01425-0 DOI
Franks S. J., Weber J. J., Aitken S. N. (2014). Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7 123–139. 10.1111/eva.12112 PubMed DOI PMC
Fridovich I. (1986). Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol. 58 61–97. PubMed
Friend A. D., Woodward F. I., Switsur V. R. (1989). Field measurements of photosynthesis, stomatal conductance, leaf nitrogen and delta-C13 along altitudinal gradients in Scotland. Funct. Ecol. 3 117–122. 10.2307/2389682 DOI
Gailing O., Langenfeld-Heyser R., Polle A., Finkeldey R. (2008). Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments. Glob. Change Biol. 14 1934–1946. 10.1111/j.1365-2486.2008.01621.x DOI
Garcia L. V. (2004). Escaping the Bonferroni iron claw in ecological studies. Oikos 105 657–663. 10.1111/j.0030-1299.2004.13046.x DOI
Gotelli N., Ellison A. (2004). A Primer of Ecological Statistics. Sunderland, MA: Sinauer Associates.
Gugger S., Kesselring H., Stoecklin J., Hamann E. (2015). Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Ann. Bot. 116 953–962. 10.1093/aob/mcv155 PubMed DOI PMC
Hasanuzzaman M., Nahar K., Fujita M. (2013). “Extreme temperature responses, oxidative stress and antioxidant defense in plants,” in Abiotic Stress - Plant Responses and Applications in Agriculture, eds Vahdati K., Leslie C. (London: IntechOpen; ).
Havaux M., Niyogi K. K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. U.S.A. 96 8762–8767. 10.1073/pnas.96.15.8762 PubMed DOI PMC
Hecke K., Tausz M., Gigele T., Havranek W. M., Anfodillo T., Grill D. (2003). Foliar antioxidants and protective pigments in Larix decidua Mill. from contrasting elevations in the northern and southern tyrolean Limestone Alps. Forstwissenschaftliches Centralblatt 122 368–375. 10.1007/s10342-003-0005-2 DOI
Hemrová L., Knappová J., Münzbergová Z. (2016). Assessment of habitat suitability is affected by plant-soil feedback: comparison of field and garden experiment. PLoS One 11:e0157800. 10.1371/journal.pone.0157800 PubMed DOI PMC
Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25 1965–1978. 10.1002/joc.1276 DOI
Hodgson J. G., Santini B. A., Marti G. M., Pla F. R., Jones G., Bogaard A., et al. (2017). Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies a Euro broken vertical bar and taxonomy with ecology? Ann. Bot. 120 633–652. 10.1093/aob/mcx084 PubMed DOI PMC
Hola D., Benešová M., Fischer L., Haisel D., Hnilička F., Hniličková H., et al. (2017). The disadvantages of being a hybrid during drought: a combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS One 12:e0176121. 10.1371/journal.pone.0176121 PubMed DOI PMC
Hultine K. R., Marshall J. D. (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123 32–40. 10.1007/s004420050986 PubMed DOI
Hurlbert S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54 187–211. 10.2307/1942661 PubMed DOI
Husáková I., Münzbergová Z. (2016). The effect of current and historical landscape structure and species life-history traits on species distribution in dry grassland-like forest openings. J. Veg. Sci. 27 545–556. 10.1111/jvs.12390 DOI
Jahns P., Holzwarth A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta Bioenerget. 1817 182–193. 10.1016/j.bbabio.2011.04.012 PubMed DOI
Jaleel C. A., Manivannan P., Wahid A., Farooq M., Al-Juburi H. J., Somasundaram R., et al. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11 100–105.
Janssens S. B., Knox E. B., Huysmans S., Smets E. F., Merckx V. (2009). Rapid radiation of impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Mol. Phylogenet. Evol. 52 806–824. 10.1016/j.ympev.2009.04.013 PubMed DOI
Jump A. S., Penuelas J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8 1010–1020. 10.1111/j.1461-0248.2005.00796.x PubMed DOI
Jumrani K., Bhatia V. S., Pandey G. P. (2017). Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynth. Res. 131 333–350. 10.1007/s11120-016-0326-y PubMed DOI
Kapoor D., Sharma R., Handa N., Kaur H., Rattan A., Yadav P., et al. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 3:13 10.3389/fenvs.2015.00013 DOI
Kergunteuil A., Humair L., Münzbergová Z., Rasmann S. (2019). Plant adaptation to different climates shapes the strengths of chemically-mediated tritrophic interactions. Funct. Ecol. 33 1893–1903. 10.1111/1365-2435.13396 DOI
Kerkhoff A. J., Fagan W. F., Elser J. J., Enquist B. J. (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168 E103–E122. 10.1086/507879 PubMed DOI
Knapp A. K., Beier C., Briske D. D., Classen A. T., Luo Y., Reichstein M., et al. (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58 811–821. 10.1641/b580908 DOI
Knappová J., Židlickác D., Kadlecc T., Knappc M., Haiseld D., Hadincová V., et al. (2018). Population differentiation related to climate of origin affects the intensity of plant-herbivore interactions in a clonal grass. Basic Appl. Ecol. 28 76–86. 10.1016/j.baae.2018.02.011 DOI
Körner C. (1999). Alpine Plant Life. Berlin: Springer-Verlag.
Körner C., Cochrane P. M. (1985). Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66 443–455. 10.1007/bf00378313 PubMed DOI
Lopez-Orenes A., Bueso M. C., Conesa H. M., Calderon A. A., Ferrer M. A. (2017). Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. Sci. Total Environ. 575 437–447. 10.1016/j.scitotenv.2016.10.030 PubMed DOI
Lubovska Z., Dobra J., Storchova H., Wilhelmova N., Vankova R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J. Plant Physiol. 171 1625–1633. 10.1016/j.jplph.2014.06.021 PubMed DOI
Martins M. Q., Rodrigues W. P., Fortunato A. S., Leitão A. E., Rodrigues A. P., Pais I. P., et al. (2016). Protective response mechanisms to heat stress in interaction with high CO2 conditions in Coffea spp. Front. Plant Sci. 7:947. 10.3389/fpls.2016.00947 PubMed DOI PMC
Maxwell K., Johnson G. N. (2000). Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51 659–668. 10.1093/jexbot/51.345.659 PubMed DOI
Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 405–410. 10.1016/s1360-1385(02)02312-9 PubMed DOI
Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11 15–19. 10.1016/j.tplants.2005.11.002 PubMed DOI
Moles A. T., Ackerly D. D., Webb C. O., Tweddle J. C., Dickie J. B., Westoby M. (2005). A brief history of seed size. Science 307 576–580. 10.1126/science.1104863 PubMed DOI
Moran M. D. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100 403–405. 10.1034/j.1600-0706.2003.12010.x DOI
Munoz P., Munne-Bosch S. (2018). Photo-oxidative stress during leaf, flower and fruit development. Plant Physiol. 176 1004–1014. 10.1104/pp.17.01127 PubMed DOI PMC
Münzbergová Z. (2007). No effect of ploidy level in plant response to competition in a common garden experiment. Biol. J. Linn. Soc. 92 211–219. 10.1111/j.1095-8312.2007.00820.x DOI
Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC
Münzbergová Z., Hadincová V., Skálová H., Vandvik V. (2017). Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105 1358–1373. 10.1111/1365-2745.12762 DOI
Münzbergová Z., Haisel D. (2019). Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynth. Res. 140 289–299. 10.1007/s11120-018-0604-y PubMed DOI
Münzbergová Z., Plačková I. (2010). Seed mass and population characteristics interact to determine performance of Scorzonera hispanica under common garden conditions. Flora 205 552–559. 10.1016/j.flora.2010.04.001 DOI
Münzbergová Z., Skuhrovec J. (2013). Effect of habitat conditions and plant traits on leaf damage in the Carduoideae subfamily. PLoS One 8:e64639. 10.1371/journal.pone.0064639 PubMed DOI PMC
Muscarella R., Bacon C. D., Faurby S., Antonelli A., Munch S., Jens-Christian Svenning K., et al. (2019). Soil fertility and flood regime are correlated with phylogenetic structure of Amazonian palm communities. Ann. Bot. 123 641–655. 10.1093/aob/mcy196 PubMed DOI PMC
Nakano Y., Asada K. (1981). Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 22 867–880.
Nicotra A. B., Atkin O. K., Bonser S. P., Davidson A. M., Finnegan E. J., Mathesius U., et al. (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15 684–692. 10.1016/j.tplants.2010.09.008 PubMed DOI
Niyogi K. K. (1999). Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 333–359. 10.1146/annurev.arplant.50.1.333 PubMed DOI
Oleksyn J., Reich P. B., Zytkowiak R., Karolewski P., Tjoelker M. G. (2002). Needle nutrients in geographically diverse Pinus sylvestris L. populations. Ann. For. Sci. 59 1–18. 10.1051/forest:2001001 DOI
Olsen R., Cole C., Watanabe F., Dean L. (1954). Estimation of available phosphorus in soils by extraction with podium bicarbonate. US Dep. Agric. Circ. 939 1–19.
Oncel I., Yurdakulol E., Keles Y., Kurt L., Yildiz A. (2004). Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecol. Int. J. Ecol. 26 211–218. 10.1016/j.actao.2004.04.004 DOI
Padilla F. M., Aarts B. H. J., Roijendijk Y. O. A., de Caluwe H., Mommer L., Visser E. J. W., et al. (2013). Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant Soil 369 377–386. 10.1007/s11104-012-1584-x DOI
Paradis E., Claude J., Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20 289–290. 10.1093/bioinformatics/btg412 PubMed DOI
Pavlíková Z., Holá D., Vlasáková B., Procházka T., Münzbergová Z. (2017). Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb. PLoS One 12:e0188795. 10.1371/journal.pone.0188795 PubMed DOI PMC
Pigliucci M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore, MD: The Johns Hopkins University Press.
Poorter H., Niinemets U., Poorter L., Wright I. J., Villar R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182 565–588. 10.1111/j.1469-8137.2009.02830.x PubMed DOI
Pospisilova J., Haisel D., Synková H., Čatský J., Wilhelmová N., Plzáková Š., et al. (2000). Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. Plant Cell Tissue Organ Cult. 61 125–133. 10.1023/a:1006402719458 DOI
Press J. R., Shrestha K. K., Sutton D. A. (2000). Annotated Checklist of the Flowering Plants of Nepal. London: The Natural History Museum.
Prinzing A., Reiffers R., Braakhekke W. G., Hennekens S. M., Tackenberg O., Ozinga W. A., et al. (2008). Less lineages - more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11 809–819. 10.1111/j.1461-0248.2008.01189.x PubMed DOI
Raabova J., Munzbergova Z., Fischer M. (2011). The role of spatial scale and soil for local adaptation in Inula hirta. Basic Appl. Ecol. 12 152–160. 10.1016/j.baae.2011.01.001 DOI
Ramirez-Valiente J. A., Koehler K., Cavender-Bares J. (2015). Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Tree Physiol. 35 521–534. 10.1093/treephys/tpv032 PubMed DOI
Ran F., Zhang X. L., Zhang Y. B., Korpelainen H., Li C. Y. (2013). Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. et Wils. seedlings as revealed by reciprocal transplantations. Trees Struct. Funct. 27 1405–1416. 10.1007/s00468-013-0888-7 DOI
Rasmann S., Pellissier L., Defossez E., Jactel H., Kunstler G. (2014). Climate-driven change in plant-insect interactions along elevation gradients. Funct. Ecol. 28 46–54. 10.1111/1365-2435.12135 DOI
Raven J. A. (2002). Selection pressures on stomatal evolution. New Phytol. 153 371–386. 10.1046/j.0028-646X.2001.00334.x PubMed DOI
Ren H. X., Wang Z. L., Chen X., Zhu Y. L. (1999). Antioxidative responses to different altitudes in Plantago major. Environ. Exp. Bot. 42 51–59. 10.1016/s0098-8472(99)00015-5 DOI
Rice W. R. (1989). Analyzing tables of statistical tests. Evolution 43 223–225. 10.2307/2409177 PubMed DOI
Richardson A. D. (2004). Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant Soil 260 291–299. 10.1023/b:plso.0000030179.02819.85 DOI
Rokaya M. B., Dostálek T., Münzbergová Z. (2016). Plant-herbivore interactions along elevational gradient: comparison of field and common garden data. Acta Oecol. Int. J. Ecol. 77 168–175. 10.1016/j.actao.2016.10.011 DOI
Ruban A. V. (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170 1903–1916. 10.1104/pp.15.01935 PubMed DOI PMC
Rustad L. E., Campbell J., Marion G., Norby R., Mitchell M., Hartley A., et al. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126 543–562. 10.1007/s004420000544 PubMed DOI
Saez P. L., Rivera B. K., Ramírez C. F., Vallejos V., Cavieres L. A., Corcuera L. J., et al. (2019). Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica. Physiol. Plant. 165 511–523. 10.1111/ppl.12739 PubMed DOI
Sairam R. K., Saxena D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J. Agron. Crop Sci. 184 55–61. 10.1046/j.1439-037x.2000.00358.x DOI
Scandalios J. G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38 995–1014. 10.1590/s0100-879x2005000700003 PubMed DOI
Scheepens J. F., Stocklin J. (2013). Flowering phenology and reproductive fitness along a mountain slope: maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia 171 679–691. 10.1007/s00442-012-2582-7 PubMed DOI
Shajitha P. P., Dhanesh N. R., Ebin P. J., Laly J., Aneesha D., Reshma J., et al. (2016). A combined chloroplast atpB-rbcL and trnL-F phylogeny unveils the ancestry of balsams (Impatiens spp.) in the Western Ghats of India. 3 Biotech 6:258. 10.1007/s13205-016-0574-8 PubMed DOI PMC
Singh S., Gupta A. K., Kaur N. (2012). Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. J. Agron. Crop Sci. 198 185–195. 10.1111/j.1439-037X.2011.00497.x DOI
Šmilauer P., Lepš J. (2014). Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge: Cambridge University Press.
Soares C., Carvalho M. E. A., Azevedo R. A., Fidalgo F. (2019). Plants facing oxidative challenges-A little help from the antioxidant networks. Environ. Exp. Bot. 161 4–25. 10.1016/j.envexpbot.2018.12.009 DOI
Song Y., Yuan Y. M., Kupfer P. (2003). Chromosomal evolution in Balsaminaceae, with cytological observations on 45 species from Southeast Asia. Caryologia 56 463–481. 10.1080/00087114.2003.10589359 DOI
Streb P., Feierabend J., Bligny R. (1997). Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ. 20 1030–1040. 10.1111/j.1365-3040.1997.tb00679.x DOI
Sugano S. S., Shimada T., Imai Y., Okawa K., Tamai A., Mori M., et al. (2010). Stomagen positively regulates stomatal density in Arabidopsis. Nature 463 241–244. 10.1038/nature08682 PubMed DOI
Szymanska R., Slesak I., Orzechowska A., Kruk J. (2017). Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139 165–177. 10.1016/j.envexpbot.2017.05.002 DOI
Taiz L., Zeiger E. (2006). Plant Physiology, 4th Edn Sunderland, MA: Sinauer Associates, Inc.
Tang Y. L., Wen X. G., Lu Q. T., Yang Z. P., Cheng Z. K., Lu C. M. (2007). Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143 629–638. 10.1104/pp.106.090712 PubMed DOI PMC
Tatebe H., Ishii M., Mochizuki T., Chikamoto Y., Sakamoto T. T., Komuro Y., et al. (2012). The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction. J. Meteorol. Soc. Jpn. 90A 275–294. 10.2151/jmsj.2012-A14 DOI
Van Breusegem F., Dat J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiol. 141 384–390. 10.1104/pp.106.078295 PubMed DOI PMC
Van De Velde H., AbdElgawad H., Asard H., Beemster G. T. S., Selim S., Nijs I., et al. (2019). Interspecific plant competition mediates the metabolic and ecological signature of a plant-herbivore interaction under warming and elevated CO2. Funct. Ecol. 33 1842–1853. 10.1111/1365-2435.13415 DOI
Veselá A., Dostálek T., Rokaya M., Münzbergová Z. (2019). Seed mass and plant origin interact to determine species germination patterns. bioRxiv 841114 10.1101/841114 DOI
Veselá A., Duongová L., Münzbergová Z. (2020). Plant origin determines seed mass, seed nutrients and germination behavior of a dominant grass species. bioRxiv 973552 10.1101/2020.03.02.973552 DOI
Walck J. L., Hidayati S. N., Dixon K. W., Thompson K., Poschlod P. (2011). Climate change and plant regeneration from seed. Glob. Change Biol. 17 2145–2161. 10.1111/j.1365-2486.2010.02368.x DOI
Wang Y. P., He W. L., Huang H. Y., An L. Z., Wang D., Zhang F. (2009). Antioxidative responses to different altitudes in leaves of alpine plant Polygonum viviparum in summer. Acta Physiol. Plant. 31 839–848. 10.1007/s11738-009-0300-9 DOI
Weih M., Karlsson P. S. (2001). Growth response of Mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol. 150 147–155. 10.1046/j.1469-8137.2001.00078.x DOI
Weiner J. (2004). Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 6 207–215. 10.1078/1433-8319-00083 DOI
Wiens J. J., Ackerly D. D., Allen A. P., Anacker B. L., Buckley L. B., Cornell H. V., et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13 1310–1324. 10.1111/j.1461-0248.2010.01515.x PubMed DOI
Wigley B. J., Slingsby J. A., Diaz S., Bond W. J., Fritz H., Coetsee C. (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. J. Ecol. 104 1357–1369. 10.1111/1365-2745.12598 DOI
Wild J., Kopecky M., Macek M., Sanda M., Jankovec J., Haase T. (2019). Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 268 40–47. 10.1016/j.agrformet.2018.12.018 DOI
Wildi B., Lutz C. (1996). Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 19 138–146. 10.1111/j.1365-3040.1996.tb00235.x DOI
Willekens H., Davey M. W., Montagu M. V., Inzé D. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J. 16 4806–4816. 10.1093/emboj/16.16.4806 PubMed DOI PMC
Willekens H., Inze D., Vanmontagu M., Vancamp W. (1995). Catalases in plants. Mol. Breed. 1 207–228. 10.1007/bf02277422 DOI
Woodward F. I., Bazzaz F. A. (1988). The responses of stomatal density to CO2 partial pressure. J. Exp. Bot. 39 1771–1781. 10.1093/jxb/39.12.1771 DOI
Woodward F. I., Lake J. A., Quick W. P. (2002). Stomatal development and CO2: ecological consequences. New Phytol. 153 477–484. 10.1046/j.0028-646X.2001.00338.x PubMed DOI
Wright I. J., Ackerly D. D., Bongers F., Harms K. E., Ibarra-Manriquez G., Martinez-Ramos M., et al. (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 99 1003–1015. 10.1093/aob/mcl066 PubMed DOI PMC
Wright I. J., Reich P. B., Westoby M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15 423–434. 10.1046/j.0269-8463.2001.00542.x DOI
Yan W. M., Zhong Y. Q. W., Shangguan Z. P. (2017). Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles. Glob. Change Biol. 23 3781–3793. 10.1111/gcb.13654 PubMed DOI
Yeh C. H., Kaplinsky N. J., Hu C., Charng Y. Y. (2012). Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci. 195 10–23. 10.1016/j.plantsci.2012.06.004 PubMed DOI PMC
Yu S. X., Janssens S. B., Zhu X. Y., Liden M., Gao T. G., Wang W. (2016). Phylogeny of Impatiens (Balsaminaceae): integrating molecular and morphological evidence into a new classification. Cladistics 32 179–197. 10.1111/cla.12119 PubMed DOI
Yuan Y. M., Song Y., Geuten K., Rahelivololona E., Wohlhauser S., Fischer E., et al. (2004). Phylogeny and biogeography of Balsaminaceae inferred from ITS sequences. Taxon 53 391–403. 10.2307/4135617 DOI
Zhang L., Niu H., Wang S., Zhu X., Luo C., Li Y., et al. (2012). Gene or environment? Species-specific control of stomatal density and length. Ecol. Evol. 2 1065–1070. 10.1002/ece3.233 PubMed DOI PMC
Zhang S. T., Du G. Z., Chen J. K. (2004). Seed size in relation to phylogeny, growth form and longevity in a subalpine meadow on the east of the Tibetan Plateau. Folia Geobot. 39 129–142. 10.1007/bf02805242 DOI
Plant palatability and trait responses to experimental warming