Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate

. 2020 ; 11 () : 400. [epub] 20200407

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32318088

Knowledge of the relationship between environmental conditions and species traits is an important prerequisite for understanding determinants of community composition and predicting species response to novel climatic conditions. Despite increasing number of studies on this topic, our knowledge on importance of genetic differentiation, plasticity and their interactions along larger sets of species is still limited especially for traits related to plant ecophysiology. We studied variation in traits related to growth, leaf chemistry, contents of photosynthetic pigments and activity of antioxidative enzymes, stomata morphology and photosynthetic activity across eight Impatiens species growing along altitudinal gradients in Himalayas cultivated in three different temperature regimes and explored effects of among species phylogenetic relationships on the results. Original and target climatic conditions determine trait values in our system. The traits are either highly plastic (e.g., APX, CAT, plant size, neoxanthin, β-carotene, chlorophyll a/b, DEPSC) or are highly differentiated among populations (stomata density, lutein production). Many traits show strong among population differentiation in degree of plasticity and direction in response to environmental changes. Most traits indicate that the species will profit from the expected warming. This suggests that different processes determine the values of the different traits and separating the importance of genetic differentiation and plasticity is crucial for our ability to predict species response to future climate changes. The results also indicate that evolution of the traits is not phylogenetically constrained but including phylogenetic information into the analysis may improve our understanding of the trait-environment relationships as was apparent from the analysis of SLA.

Zobrazit více v PubMed

Aasamaa K., Sober A. (2011). Stomatal sensitivities to changes in leaf water potential, air humidity, CO2 concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduous tree species. Environ. Exp. Bot. 71 72–78. 10.1016/j.envexpbot.2010.10.013 DOI

Ackerly D. (2009). Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl. Acad. Sci. U.S.A. 106 19699–19706. 10.1073/pnas.0901635106 PubMed DOI PMC

Ackerly D. D., Donoghue M. J. (1995). Phylogeny and ecology reconsidered. J. Ecol. 83 730–733. 10.2307/2261642 DOI

Ackerly D. D., Nyffeler R. (2004). Evolutionary diversification of continuous traits: phylogenetic tests and application to seed size in the California flora. Evol. Ecol. 18 249–272. 10.1023/b:evec.0000035031.50566.60 DOI

Acuna-Rodriguez I. S., Torres-Diaz C., Hereme R., Molina-Montenegro M. A. (2017). Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient. PeerJ 5:e3718. 10.7717/peerj.3718 PubMed DOI PMC

Akiyama S., Ohba H., Wakabayashi M. (1991). “Taxonomic notes of the east Himalayan species of impatiens. Studies of Himalayan Impatiens (Balsaminaceae),” in The Himalayan Plants, eds Ohba H., Malla S. M. (Tokyo: University of Tokyo Press; ), 66–94.

Anderson J. T., Gezon Z. J. (2015). Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae). Glob. Change Biol. 21 1689–1703. 10.1111/gcb.12770 PubMed DOI

Anderson J. T., Inouye D. W., McKinney A. M., Colautti R. I., Mitchell-Olds T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B Biol. Sci. 279 3843–3852. 10.1098/rspb.2012.1051 PubMed DOI PMC

Ashraf M., Harris P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51 163–190. 10.1007/s11099-013-0021-6 PubMed DOI

Baker N. R., Rosenqvist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55 1607–1621. 10.1093/jxb/erh196 PubMed DOI

Barak R. S., Lichtenberger T. M., Wellman-Houde A., Kramer A. T., Larkin D. J. (2018). Cracking the case: seed traits and phylogeny predict time to germination in prairie restoration species. Ecol. Evol. 8 5551–5562. 10.1002/ece3.4083 PubMed DOI PMC

Bawa K. S., Ingty T., Revell L. J., Shivaprakash K. N. (2019). Correlated evolution of flower size and seed number in flowering plants (monocotyledons). Ann. Bot. 123 181–190. 10.1093/aob/mcy154 PubMed DOI PMC

Beaucham C., Fridovic I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 276–287. 10.1016/0003-2697(71)90370-8 PubMed DOI

Beaulieu J. M., Leitch I. J., Patel S., Pendharkar A., Knight C. A. (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179 975–986. 10.1111/j.1469-8137.2008.02528.x PubMed DOI

Benomar L., Lamhamedi M. S., Rainville A., Beaulieu J., Bousquet J., Margolis H. A. (2016). Genetic adaptation vs. Ecophysiological plasticity of photosynthetic-related traits in young Picea glauca trees along a regional climatic gradient. Front. Plant Sci. 7:48. 10.3389/fpls.2016.00048 PubMed DOI PMC

Bertolino L. T., Caine R. S., Gray J. E. (2019). Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 10:225. 10.3389/fpls.2019.00225 PubMed DOI PMC

Bowler C., Fluhr R. (2000). The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 5 241–246. 10.1016/s1360-1385(00)01628-9 PubMed DOI

Bowman G., Perret C., Hoehn S., Galeuchet D. J., Fischer M. (2008). Habitat fragmentation and adaptation: a reciprocal replant-transplant experiment among 15 populations of Lychnis flos-cuculi. J. Ecol. 96 1056–1064. 10.1111/j.1365-2745.2008.01417.x DOI

Bradford M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1006/abio.1976.9999 PubMed DOI

Bruelheide H., Dengler J., Purschke O., Lenoir J., Jiménez-Alfaro B., Hennekens S. M., et al. (2018). Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2 1906–1917. 10.1038/s41559-018-0699-8 PubMed DOI

Campbell D. R., Sosenski P., Raguso R. A. (2019). Phenotypic plasticity of floral volatiles in response to increasing drought stress. Ann. Bot. 123 601–610. 10.1093/aob/mcy193 PubMed DOI PMC

Casson S. A., Franklin K. A., Gray J. E., Grierson C. S., Whitelam G. C., Hetherington A. M. (2009). phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr. Biol. 19 229–234. 10.1016/j.cub.2008.12.046 PubMed DOI

Chance B., Maehly A. C. (1955). Assay of catalases and peroxidases. Methods Enzymol. 2 764–775. 10.1016/s0076-6879(55)02300-8 PubMed DOI

Chapin F. S., Shaver G. R. (1996). Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77 822–840. 10.2307/2265504 DOI

Chapman D. S., Gray A. (2012). Complex interactions between the wind and ballistic seed dispersal in Impatiens glandulifera (Royle). J. Ecol. 100 874–883. 10.1111/j.1365-2745.2012.01977.x DOI

Chaves M. M., Costa J. M., Zarrouk O., Pinheiro C., Lopes C. M., Pereira J. S. (2016). Controlling stomatal aperture in semi-arid regions-The dilemma of saving water or being cool? Plant Sci. 251 54–64. 10.1016/j.plantsci.2016.06.015 PubMed DOI

Chen Y. E., Cui J. M., Su Y. Q., Zhang C. M., Ma J., Zhang Z. W., et al. (2017). Comparison of phosphorylation and assembly of photosystem complexes and redox homeostasis in two wheat cultivars with different drought resistance. Sci. Rep. 7:12718. 10.1038/s41598-017-13145-1 PubMed DOI PMC

Chomicki G., Coiro M., Renner S. S. (2017). Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. Ann. Bot. 120 855–891. 10.1093/aob/mcx113 PubMed DOI PMC

Dall’Osto L., Cazzaniga S., North H., Marion-Poll A., Bassi R. (2007). The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19 1048–1064. 10.1105/tpc.106.049114 PubMed DOI PMC

Das K., Roychoudhury A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53 10.3389/fenvs.2014.00053 DOI

Datta A., Kuhn I., Ahmad M., Michalski S., Auge H. (2017). Processes affecting altitudinal distribution of invasive Ageratina adenophora in western Himalaya: the role of local adaptation and the importance of different life-cycle stages. PLoS One 12:e0187708. 10.1371/journal.pone.0187708 PubMed DOI PMC

DemmigAdams B., Adams W. W. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1 21–26. 10.1016/s1360-1385(96)80019-7 DOI

Desdevises Y., Legendre P., Azouzi L., Morand S. (2003). Quantifying phylogenetically structured environmental variation. Evolution 57 2647–2652. 10.1111/j.0014-3820.2003.tb01508.x PubMed DOI

Diaz S., Hodgson J. G., Thompson K., Cabido M., Cornelissen J. H. C., Jalili A., et al. (2004). The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15 295–304. 10.1111/j.1654-1103.2004.tb02266.x DOI

Diniz J. A. F., De Sant’ana C. E. R., Bini L. M. (1998). An eigenvector method for estimating phylogenetic inertia. Evolution 52 1247–1262. 10.2307/2411294 PubMed DOI

Dostálek T., Münzbergová Z., Plačková I. (2010). Genetic diversity and its effect on fitness in an endangered plant species, Dracocephalum austriacum L. Conserv. Genet. 11 773–783. 10.1007/s10592-009-9879-z DOI

Dostálek T., Rokaya B. M., Maršík P., Rezek J., Skuhrovec J., Pavela R., et al. (2016). Trade-off among different anti-herbivore defence strategies along an altitudinal gradient. AoB Plants 8:lw026. 10.1093/aobpla/plw026 PubMed DOI PMC

Dostálek T., Rokaya M. B., Münzbergová Z. (2018). Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics. PLoS One 13:e0209149. 10.1371/journal.pone.0209149 PubMed DOI PMC

Dostálek T., Rokaya M. B., Münzbergová Z. (2019). Effects of temperature of plant cultivation on plant palatability modify species response to novel climate. bioRxiv 841148 10.1101/841148 DOI

Dreesen F. E., De Boeck H. J., Janssens I. A., Nijs I. (2014). Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages. Biogeosciences 11 109–121. 10.5194/bg-11-109-2014 DOI

Dunn O. (1961). Comparisons among means. J. Am. Stat. Assoc. 56 52–64.

Ehmig M., Coiro M., Linder H. P. (2019). Ecophysiological strategy switch through development in heteroblastic species of Mediterranean ecosystems - an example in the African Restionaceae. Ann. Bot. 123 611–623. 10.1093/aob/mcy194 PubMed DOI PMC

Ehrenberger F., Gorbach S. (1973). Methoden der Organischen Elementar- und Purenanalyse. Weinheim: Verlag Chemie.

Ensminger I., Busch F., Huner N. P. A. (2006). Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol. Plant. 126 28–44. 10.1111/j.1399-3054.2006.00627.x PubMed DOI

Esteban R., Barrutia O., Artetxe U., Fernandez-Marin B., Hernandez A., Garcia-Plazaola J. I. (2015). Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach. New Phytol. 206 268–280. 10.1111/nph.13186 PubMed DOI

Farrant J. M., Ruelland E. (2015). Plant signalling mechanisms in response to the environment. Environ. Exp. Bot. 114 1–3. 10.1016/j.envexpbot.2015.02.006 DOI

Felsenstein J. (1985). Phylogenies and the comparative method. Am. Nat. 125 1–15. 10.1086/284325 DOI

Fernandez-Marin B., Miguez F., Becerril J. M., Garcia-Plazaola J. I. (2011). Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. BMC Plant Biol. 11:181. 10.1186/1471-2229-11-181 PubMed DOI PMC

Figueroa J. A., Armesto J. J. (2001). Community-wide germination strategies in a temperate rainforest of Southern Chile: ecological and evolutionary correlates. Aust. J. Bot. 49 411–425. 10.1071/bt00013 DOI

Forster B., Pogson B. J., Osmond C. B. (2011). Lutein from deepoxidation of lutein epoxide replaces zeaxanthin to sustain an enhanced capacity for nonphotochemical chlorophyll fluorescence quenching in avocado shade leaves in the dark. Plant Physiol. 156 393–403. 10.1104/pp.111.173369 PubMed DOI PMC

Foyer C. H., Vanacker H., Gomez L. D., Harbinson J. (2002). Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiol. Biochem. 40 659–668. 10.1016/s0981-9428(02)01425-0 DOI

Franks S. J., Weber J. J., Aitken S. N. (2014). Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7 123–139. 10.1111/eva.12112 PubMed DOI PMC

Fridovich I. (1986). Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol. 58 61–97. PubMed

Friend A. D., Woodward F. I., Switsur V. R. (1989). Field measurements of photosynthesis, stomatal conductance, leaf nitrogen and delta-C13 along altitudinal gradients in Scotland. Funct. Ecol. 3 117–122. 10.2307/2389682 DOI

Gailing O., Langenfeld-Heyser R., Polle A., Finkeldey R. (2008). Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments. Glob. Change Biol. 14 1934–1946. 10.1111/j.1365-2486.2008.01621.x DOI

Garcia L. V. (2004). Escaping the Bonferroni iron claw in ecological studies. Oikos 105 657–663. 10.1111/j.0030-1299.2004.13046.x DOI

Gotelli N., Ellison A. (2004). A Primer of Ecological Statistics. Sunderland, MA: Sinauer Associates.

Gugger S., Kesselring H., Stoecklin J., Hamann E. (2015). Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought. Ann. Bot. 116 953–962. 10.1093/aob/mcv155 PubMed DOI PMC

Hasanuzzaman M., Nahar K., Fujita M. (2013). “Extreme temperature responses, oxidative stress and antioxidant defense in plants,” in Abiotic Stress - Plant Responses and Applications in Agriculture, eds Vahdati K., Leslie C. (London: IntechOpen; ).

Havaux M., Niyogi K. K. (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. U.S.A. 96 8762–8767. 10.1073/pnas.96.15.8762 PubMed DOI PMC

Hecke K., Tausz M., Gigele T., Havranek W. M., Anfodillo T., Grill D. (2003). Foliar antioxidants and protective pigments in Larix decidua Mill. from contrasting elevations in the northern and southern tyrolean Limestone Alps. Forstwissenschaftliches Centralblatt 122 368–375. 10.1007/s10342-003-0005-2 DOI

Hemrová L., Knappová J., Münzbergová Z. (2016). Assessment of habitat suitability is affected by plant-soil feedback: comparison of field and garden experiment. PLoS One 11:e0157800. 10.1371/journal.pone.0157800 PubMed DOI PMC

Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25 1965–1978. 10.1002/joc.1276 DOI

Hodgson J. G., Santini B. A., Marti G. M., Pla F. R., Jones G., Bogaard A., et al. (2017). Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies a Euro broken vertical bar and taxonomy with ecology? Ann. Bot. 120 633–652. 10.1093/aob/mcx084 PubMed DOI PMC

Hola D., Benešová M., Fischer L., Haisel D., Hnilička F., Hniličková H., et al. (2017). The disadvantages of being a hybrid during drought: a combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS One 12:e0176121. 10.1371/journal.pone.0176121 PubMed DOI PMC

Hultine K. R., Marshall J. D. (2000). Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123 32–40. 10.1007/s004420050986 PubMed DOI

Hurlbert S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54 187–211. 10.2307/1942661 PubMed DOI

Husáková I., Münzbergová Z. (2016). The effect of current and historical landscape structure and species life-history traits on species distribution in dry grassland-like forest openings. J. Veg. Sci. 27 545–556. 10.1111/jvs.12390 DOI

Jahns P., Holzwarth A. R. (2012). The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta Bioenerget. 1817 182–193. 10.1016/j.bbabio.2011.04.012 PubMed DOI

Jaleel C. A., Manivannan P., Wahid A., Farooq M., Al-Juburi H. J., Somasundaram R., et al. (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Biol. 11 100–105.

Janssens S. B., Knox E. B., Huysmans S., Smets E. F., Merckx V. (2009). Rapid radiation of impatiens (Balsaminaceae) during Pliocene and Pleistocene: result of a global climate change. Mol. Phylogenet. Evol. 52 806–824. 10.1016/j.ympev.2009.04.013 PubMed DOI

Jump A. S., Penuelas J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8 1010–1020. 10.1111/j.1461-0248.2005.00796.x PubMed DOI

Jumrani K., Bhatia V. S., Pandey G. P. (2017). Impact of elevated temperatures on specific leaf weight, stomatal density, photosynthesis and chlorophyll fluorescence in soybean. Photosynth. Res. 131 333–350. 10.1007/s11120-016-0326-y PubMed DOI

Kapoor D., Sharma R., Handa N., Kaur H., Rattan A., Yadav P., et al. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front. Environ. Sci. 3:13 10.3389/fenvs.2015.00013 DOI

Kergunteuil A., Humair L., Münzbergová Z., Rasmann S. (2019). Plant adaptation to different climates shapes the strengths of chemically-mediated tritrophic interactions. Funct. Ecol. 33 1893–1903. 10.1111/1365-2435.13396 DOI

Kerkhoff A. J., Fagan W. F., Elser J. J., Enquist B. J. (2006). Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168 E103–E122. 10.1086/507879 PubMed DOI

Knapp A. K., Beier C., Briske D. D., Classen A. T., Luo Y., Reichstein M., et al. (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 58 811–821. 10.1641/b580908 DOI

Knappová J., Židlickác D., Kadlecc T., Knappc M., Haiseld D., Hadincová V., et al. (2018). Population differentiation related to climate of origin affects the intensity of plant-herbivore interactions in a clonal grass. Basic Appl. Ecol. 28 76–86. 10.1016/j.baae.2018.02.011 DOI

Körner C. (1999). Alpine Plant Life. Berlin: Springer-Verlag.

Körner C., Cochrane P. M. (1985). Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66 443–455. 10.1007/bf00378313 PubMed DOI

Lopez-Orenes A., Bueso M. C., Conesa H. M., Calderon A. A., Ferrer M. A. (2017). Seasonal changes in antioxidative/oxidative profile of mining and non-mining populations of Syrian beancaper as determined by soil conditions. Sci. Total Environ. 575 437–447. 10.1016/j.scitotenv.2016.10.030 PubMed DOI

Lubovska Z., Dobra J., Storchova H., Wilhelmova N., Vankova R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J. Plant Physiol. 171 1625–1633. 10.1016/j.jplph.2014.06.021 PubMed DOI

Martins M. Q., Rodrigues W. P., Fortunato A. S., Leitão A. E., Rodrigues A. P., Pais I. P., et al. (2016). Protective response mechanisms to heat stress in interaction with high CO2 conditions in Coffea spp. Front. Plant Sci. 7:947. 10.3389/fpls.2016.00947 PubMed DOI PMC

Maxwell K., Johnson G. N. (2000). Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51 659–668. 10.1093/jexbot/51.345.659 PubMed DOI

Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 405–410. 10.1016/s1360-1385(02)02312-9 PubMed DOI

Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11 15–19. 10.1016/j.tplants.2005.11.002 PubMed DOI

Moles A. T., Ackerly D. D., Webb C. O., Tweddle J. C., Dickie J. B., Westoby M. (2005). A brief history of seed size. Science 307 576–580. 10.1126/science.1104863 PubMed DOI

Moran M. D. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100 403–405. 10.1034/j.1600-0706.2003.12010.x DOI

Munoz P., Munne-Bosch S. (2018). Photo-oxidative stress during leaf, flower and fruit development. Plant Physiol. 176 1004–1014. 10.1104/pp.17.01127 PubMed DOI PMC

Münzbergová Z. (2007). No effect of ploidy level in plant response to competition in a common garden experiment. Biol. J. Linn. Soc. 92 211–219. 10.1111/j.1095-8312.2007.00820.x DOI

Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC

Münzbergová Z., Hadincová V., Skálová H., Vandvik V. (2017). Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105 1358–1373. 10.1111/1365-2745.12762 DOI

Münzbergová Z., Haisel D. (2019). Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynth. Res. 140 289–299. 10.1007/s11120-018-0604-y PubMed DOI

Münzbergová Z., Plačková I. (2010). Seed mass and population characteristics interact to determine performance of Scorzonera hispanica under common garden conditions. Flora 205 552–559. 10.1016/j.flora.2010.04.001 DOI

Münzbergová Z., Skuhrovec J. (2013). Effect of habitat conditions and plant traits on leaf damage in the Carduoideae subfamily. PLoS One 8:e64639. 10.1371/journal.pone.0064639 PubMed DOI PMC

Muscarella R., Bacon C. D., Faurby S., Antonelli A., Munch S., Jens-Christian Svenning K., et al. (2019). Soil fertility and flood regime are correlated with phylogenetic structure of Amazonian palm communities. Ann. Bot. 123 641–655. 10.1093/aob/mcy196 PubMed DOI PMC

Nakano Y., Asada K. (1981). Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 22 867–880.

Nicotra A. B., Atkin O. K., Bonser S. P., Davidson A. M., Finnegan E. J., Mathesius U., et al. (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15 684–692. 10.1016/j.tplants.2010.09.008 PubMed DOI

Niyogi K. K. (1999). Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 333–359. 10.1146/annurev.arplant.50.1.333 PubMed DOI

Oleksyn J., Reich P. B., Zytkowiak R., Karolewski P., Tjoelker M. G. (2002). Needle nutrients in geographically diverse Pinus sylvestris L. populations. Ann. For. Sci. 59 1–18. 10.1051/forest:2001001 DOI

Olsen R., Cole C., Watanabe F., Dean L. (1954). Estimation of available phosphorus in soils by extraction with podium bicarbonate. US Dep. Agric. Circ. 939 1–19.

Oncel I., Yurdakulol E., Keles Y., Kurt L., Yildiz A. (2004). Role of antioxidant defense system and biochemical adaptation on stress tolerance of high mountain and steppe plants. Acta Oecol. Int. J. Ecol. 26 211–218. 10.1016/j.actao.2004.04.004 DOI

Padilla F. M., Aarts B. H. J., Roijendijk Y. O. A., de Caluwe H., Mommer L., Visser E. J. W., et al. (2013). Root plasticity maintains growth of temperate grassland species under pulsed water supply. Plant Soil 369 377–386. 10.1007/s11104-012-1584-x DOI

Paradis E., Claude J., Strimmer K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20 289–290. 10.1093/bioinformatics/btg412 PubMed DOI

Pavlíková Z., Holá D., Vlasáková B., Procházka T., Münzbergová Z. (2017). Physiological and fitness differences between cytotypes vary with stress in a grassland perennial herb. PLoS One 12:e0188795. 10.1371/journal.pone.0188795 PubMed DOI PMC

Pigliucci M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture. Baltimore, MD: The Johns Hopkins University Press.

Poorter H., Niinemets U., Poorter L., Wright I. J., Villar R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182 565–588. 10.1111/j.1469-8137.2009.02830.x PubMed DOI

Pospisilova J., Haisel D., Synková H., Čatský J., Wilhelmová N., Plzáková Š., et al. (2000). Photosynthetic pigments and gas exchange during ex vitro acclimation of tobacco plants as affected by CO2 supply and abscisic acid. Plant Cell Tissue Organ Cult. 61 125–133. 10.1023/a:1006402719458 DOI

Press J. R., Shrestha K. K., Sutton D. A. (2000). Annotated Checklist of the Flowering Plants of Nepal. London: The Natural History Museum.

Prinzing A., Reiffers R., Braakhekke W. G., Hennekens S. M., Tackenberg O., Ozinga W. A., et al. (2008). Less lineages - more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11 809–819. 10.1111/j.1461-0248.2008.01189.x PubMed DOI

Raabova J., Munzbergova Z., Fischer M. (2011). The role of spatial scale and soil for local adaptation in Inula hirta. Basic Appl. Ecol. 12 152–160. 10.1016/j.baae.2011.01.001 DOI

Ramirez-Valiente J. A., Koehler K., Cavender-Bares J. (2015). Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes). Tree Physiol. 35 521–534. 10.1093/treephys/tpv032 PubMed DOI

Ran F., Zhang X. L., Zhang Y. B., Korpelainen H., Li C. Y. (2013). Altitudinal variation in growth, photosynthetic capacity and water use efficiency of Abies faxoniana Rehd. et Wils. seedlings as revealed by reciprocal transplantations. Trees Struct. Funct. 27 1405–1416. 10.1007/s00468-013-0888-7 DOI

Rasmann S., Pellissier L., Defossez E., Jactel H., Kunstler G. (2014). Climate-driven change in plant-insect interactions along elevation gradients. Funct. Ecol. 28 46–54. 10.1111/1365-2435.12135 DOI

Raven J. A. (2002). Selection pressures on stomatal evolution. New Phytol. 153 371–386. 10.1046/j.0028-646X.2001.00334.x PubMed DOI

Ren H. X., Wang Z. L., Chen X., Zhu Y. L. (1999). Antioxidative responses to different altitudes in Plantago major. Environ. Exp. Bot. 42 51–59. 10.1016/s0098-8472(99)00015-5 DOI

Rice W. R. (1989). Analyzing tables of statistical tests. Evolution 43 223–225. 10.2307/2409177 PubMed DOI

Richardson A. D. (2004). Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States. Plant Soil 260 291–299. 10.1023/b:plso.0000030179.02819.85 DOI

Rokaya M. B., Dostálek T., Münzbergová Z. (2016). Plant-herbivore interactions along elevational gradient: comparison of field and common garden data. Acta Oecol. Int. J. Ecol. 77 168–175. 10.1016/j.actao.2016.10.011 DOI

Ruban A. V. (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170 1903–1916. 10.1104/pp.15.01935 PubMed DOI PMC

Rustad L. E., Campbell J., Marion G., Norby R., Mitchell M., Hartley A., et al. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126 543–562. 10.1007/s004420000544 PubMed DOI

Saez P. L., Rivera B. K., Ramírez C. F., Vallejos V., Cavieres L. A., Corcuera L. J., et al. (2019). Effects of temperature and water availability on light energy utilization in photosynthetic processes of Deschampsia antarctica. Physiol. Plant. 165 511–523. 10.1111/ppl.12739 PubMed DOI

Sairam R. K., Saxena D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J. Agron. Crop Sci. 184 55–61. 10.1046/j.1439-037x.2000.00358.x DOI

Scandalios J. G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38 995–1014. 10.1590/s0100-879x2005000700003 PubMed DOI

Scheepens J. F., Stocklin J. (2013). Flowering phenology and reproductive fitness along a mountain slope: maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia 171 679–691. 10.1007/s00442-012-2582-7 PubMed DOI

Shajitha P. P., Dhanesh N. R., Ebin P. J., Laly J., Aneesha D., Reshma J., et al. (2016). A combined chloroplast atpB-rbcL and trnL-F phylogeny unveils the ancestry of balsams (Impatiens spp.) in the Western Ghats of India. 3 Biotech 6:258. 10.1007/s13205-016-0574-8 PubMed DOI PMC

Singh S., Gupta A. K., Kaur N. (2012). Differential responses of antioxidative defence system to long-term field drought in wheat (Triticum aestivum L.) genotypes differing in drought tolerance. J. Agron. Crop Sci. 198 185–195. 10.1111/j.1439-037X.2011.00497.x DOI

Šmilauer P., Lepš J. (2014). Multivariate Analysis of Ecological Data using CANOCO 5. Cambridge: Cambridge University Press.

Soares C., Carvalho M. E. A., Azevedo R. A., Fidalgo F. (2019). Plants facing oxidative challenges-A little help from the antioxidant networks. Environ. Exp. Bot. 161 4–25. 10.1016/j.envexpbot.2018.12.009 DOI

Song Y., Yuan Y. M., Kupfer P. (2003). Chromosomal evolution in Balsaminaceae, with cytological observations on 45 species from Southeast Asia. Caryologia 56 463–481. 10.1080/00087114.2003.10589359 DOI

Streb P., Feierabend J., Bligny R. (1997). Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant Cell Environ. 20 1030–1040. 10.1111/j.1365-3040.1997.tb00679.x DOI

Sugano S. S., Shimada T., Imai Y., Okawa K., Tamai A., Mori M., et al. (2010). Stomagen positively regulates stomatal density in Arabidopsis. Nature 463 241–244. 10.1038/nature08682 PubMed DOI

Szymanska R., Slesak I., Orzechowska A., Kruk J. (2017). Physiological and biochemical responses to high light and temperature stress in plants. Environ. Exp. Bot. 139 165–177. 10.1016/j.envexpbot.2017.05.002 DOI

Taiz L., Zeiger E. (2006). Plant Physiology, 4th Edn Sunderland, MA: Sinauer Associates, Inc.

Tang Y. L., Wen X. G., Lu Q. T., Yang Z. P., Cheng Z. K., Lu C. M. (2007). Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 143 629–638. 10.1104/pp.106.090712 PubMed DOI PMC

Tatebe H., Ishii M., Mochizuki T., Chikamoto Y., Sakamoto T. T., Komuro Y., et al. (2012). The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction. J. Meteorol. Soc. Jpn. 90A 275–294. 10.2151/jmsj.2012-A14 DOI

Van Breusegem F., Dat J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiol. 141 384–390. 10.1104/pp.106.078295 PubMed DOI PMC

Van De Velde H., AbdElgawad H., Asard H., Beemster G. T. S., Selim S., Nijs I., et al. (2019). Interspecific plant competition mediates the metabolic and ecological signature of a plant-herbivore interaction under warming and elevated CO2. Funct. Ecol. 33 1842–1853. 10.1111/1365-2435.13415 DOI

Veselá A., Dostálek T., Rokaya M., Münzbergová Z. (2019). Seed mass and plant origin interact to determine species germination patterns. bioRxiv 841114 10.1101/841114 DOI

Veselá A., Duongová L., Münzbergová Z. (2020). Plant origin determines seed mass, seed nutrients and germination behavior of a dominant grass species. bioRxiv 973552 10.1101/2020.03.02.973552 DOI

Walck J. L., Hidayati S. N., Dixon K. W., Thompson K., Poschlod P. (2011). Climate change and plant regeneration from seed. Glob. Change Biol. 17 2145–2161. 10.1111/j.1365-2486.2010.02368.x DOI

Wang Y. P., He W. L., Huang H. Y., An L. Z., Wang D., Zhang F. (2009). Antioxidative responses to different altitudes in leaves of alpine plant Polygonum viviparum in summer. Acta Physiol. Plant. 31 839–848. 10.1007/s11738-009-0300-9 DOI

Weih M., Karlsson P. S. (2001). Growth response of Mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol. 150 147–155. 10.1046/j.1469-8137.2001.00078.x DOI

Weiner J. (2004). Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 6 207–215. 10.1078/1433-8319-00083 DOI

Wiens J. J., Ackerly D. D., Allen A. P., Anacker B. L., Buckley L. B., Cornell H. V., et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13 1310–1324. 10.1111/j.1461-0248.2010.01515.x PubMed DOI

Wigley B. J., Slingsby J. A., Diaz S., Bond W. J., Fritz H., Coetsee C. (2016). Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. J. Ecol. 104 1357–1369. 10.1111/1365-2745.12598 DOI

Wild J., Kopecky M., Macek M., Sanda M., Jankovec J., Haase T. (2019). Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 268 40–47. 10.1016/j.agrformet.2018.12.018 DOI

Wildi B., Lutz C. (1996). Antioxidant composition of selected high alpine plant species from different altitudes. Plant Cell Environ. 19 138–146. 10.1111/j.1365-3040.1996.tb00235.x DOI

Willekens H., Davey M. W., Montagu M. V., Inzé D. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants. EMBO J. 16 4806–4816. 10.1093/emboj/16.16.4806 PubMed DOI PMC

Willekens H., Inze D., Vanmontagu M., Vancamp W. (1995). Catalases in plants. Mol. Breed. 1 207–228. 10.1007/bf02277422 DOI

Woodward F. I., Bazzaz F. A. (1988). The responses of stomatal density to CO2 partial pressure. J. Exp. Bot. 39 1771–1781. 10.1093/jxb/39.12.1771 DOI

Woodward F. I., Lake J. A., Quick W. P. (2002). Stomatal development and CO2: ecological consequences. New Phytol. 153 477–484. 10.1046/j.0028-646X.2001.00338.x PubMed DOI

Wright I. J., Ackerly D. D., Bongers F., Harms K. E., Ibarra-Manriquez G., Martinez-Ramos M., et al. (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Ann. Bot. 99 1003–1015. 10.1093/aob/mcl066 PubMed DOI PMC

Wright I. J., Reich P. B., Westoby M. (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15 423–434. 10.1046/j.0269-8463.2001.00542.x DOI

Yan W. M., Zhong Y. Q. W., Shangguan Z. P. (2017). Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles. Glob. Change Biol. 23 3781–3793. 10.1111/gcb.13654 PubMed DOI

Yeh C. H., Kaplinsky N. J., Hu C., Charng Y. Y. (2012). Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci. 195 10–23. 10.1016/j.plantsci.2012.06.004 PubMed DOI PMC

Yu S. X., Janssens S. B., Zhu X. Y., Liden M., Gao T. G., Wang W. (2016). Phylogeny of Impatiens (Balsaminaceae): integrating molecular and morphological evidence into a new classification. Cladistics 32 179–197. 10.1111/cla.12119 PubMed DOI

Yuan Y. M., Song Y., Geuten K., Rahelivololona E., Wohlhauser S., Fischer E., et al. (2004). Phylogeny and biogeography of Balsaminaceae inferred from ITS sequences. Taxon 53 391–403. 10.2307/4135617 DOI

Zhang L., Niu H., Wang S., Zhu X., Luo C., Li Y., et al. (2012). Gene or environment? Species-specific control of stomatal density and length. Ecol. Evol. 2 1065–1070. 10.1002/ece3.233 PubMed DOI PMC

Zhang S. T., Du G. Z., Chen J. K. (2004). Seed size in relation to phylogeny, growth form and longevity in a subalpine meadow on the east of the Tibetan Plateau. Folia Geobot. 39 129–142. 10.1007/bf02805242 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...