The role of plant-soil feedback in long-term species coexistence cannot be predicted from its effects on plant performance
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35709943
PubMed Central
PMC9510945
DOI
10.1093/aob/mcac080
PII: 6609529
Knihovny.cz E-zdroje
- Klíčová slova
- Bromus erectus, Inula salicina, Janzen–Connell hypothesis, Plant–soil (below-ground) interactions, coexistence, germination, moisture treatment, population dynamics, population growth rate, target–neighbour design,
- MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- rostliny * MeSH
- semenáček MeSH
- vývoj rostlin MeSH
- zpětná vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda * MeSH
BACKGROUND: Despite many studies on the importance of competition and plants' associations with mutualists and pathogens on plant performance and community organization, the joint effects of these two factors remain largely unexplored. Even less is known about how these joint effects vary through a plant's life in different environmental conditions and how they contribute to the long-term coexistence of species. METHODS: We investigated the role of plant-soil feedback (PSF) in intra- and interspecific competition, using two co-occurring dry grassland species as models. A two-phase PSF experiment was used. In the first phase, soil was conditioned by the two plant species. In the second, we assessed the effect of soil conditioning, competition and drought stress on seedling establishment, plant growth in the first and second vegetation season, and fruit production. We also estimated effects of different treatments on overall population growth rates and predicted the species' potential coexistence. RESULTS: Soil conditioning played a more important role in the early stages of the plants' life (seedling establishment and early growth) than competition. Specifically, we found strong negative intraspecific PSF for biomass production in the first year in both species. Although the effects of soil conditioning persisted in later stages of plant's life, competition and drought stress became more important. Surprisingly, models predicting species coexistence contrasted with the effects on individual life stages, showing that our model species benefit from their self-conditioned soil in the long run. CONCLUSIONS: We provide evidence that the effects of PSF vary through plants' life stages. Our study suggests that we cannot easily predict the effects of soil conditioning on long-term coexistence of species using data only on performance at a single time as commonly done in PSF studies. We also show the importance of using as realistic environmental conditions as possible (such as drought stress experienced in dry grasslands) to draw reasonable conclusions on species coexistence.
Department of Botany Faculty of Science Charles University Benátská Prague Czech Republic
Institute of Botany The Czech Academy of Sciences Zámek Průhonice Czech Republic
Zobrazit více v PubMed
Aldorfová A, Knobová P, Münzbergová, Z.. 2020. Plant–soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos 129: 1257–1270. doi:10.1111/oik.07186. DOI
Aldorfová A, Münzbergová Z.. 2019. Conditions of plant cultivation affect the differences in intraspecific plant-soil feedback between invasive and native dominants. Flora 261: 151492. doi:10.1016/j.flora.2019.151492. DOI
Aschehoug ET, Brooker R, Atwater DZ, Maron JL, Callaway RM.. 2016. The mechanisms and consequences of interspecific competition among plants. Annual Review of Ecology, Evolution, and Systematics 47: 263–281. doi:10.1146/annurev-ecolsys-121415-032123. DOI
Basyal B, Emery SM.. 2021. An arbuscular mycorrhizal fungus alters switchgrass growth, root architecture, and cell wall chemistry across a soil moisture gradient. Mycorrhiza 31: 251–258. doi:10.1007/s00572-020-00992-6. PubMed DOI
Beals KK, Moore JAM, Kivlin SN, et al. . 2020. Predicting plant–soil feedback in the field: meta-analysis reveals that competition and environmental stress differentially influence PSF. Frontiers in Ecology and Evolution 8: 191.
Bever JD. 2003. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist 157: 465–473. doi:10.1046/j.1469-8137.2003.00714.x. PubMed DOI
Bever JD, Mangan SA, Alexander HM.. 2015. Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution, and Systematics 46: 305–325. doi:10.1146/annurev-ecolsys-112414-054306. DOI
Bever JD, Westover KM, Antonovics J.. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology 85: 561–573.
Bezemer TM, Jing J, Bakx-Schotman, JMT, Bijleveld, E-J.. 2018. Plant competition alters the temporal dynamics of plant–soil feedbacks. Journal of Ecology 106: 2287–2300. doi:10.1111/1365-2745.12999. DOI
Blossey B, Nuzzo V, Davalos A, et al. . 2021. Residence time determines invasiveness and performance of garlic mustard (Alliaria petiolata) in North America. Ecology Letters 24: 327–336. doi:10.1111/ele.13649. PubMed DOI PMC
Brinkman PE, Van der Putten WH, Bakker E-J, Verhoeven KJF.. 2010. Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology 98: 1063–1073.
Callaway RM, DeLucia EH, Moore D, Nowak R, Schlesinger, WH.. 1996. Competition and facilitation: contrasting effects of Artemisia tridentata on desert vs. montane pines. Ecology 77: 2130–2141. doi:10.2307/2265707. DOI
Casper BB, Castelli JP.. 2007. Evaluating plant–soil feedback together with competition in a serpentine grassland. Ecology Letters 10: 394–400. doi:10.1111/j.1461-0248.2007.01030.x. PubMed DOI
Caswell H. 2001. Matrix population models: construction, analysis, and interpretation. Sunderland, MA: Sinauer Associates.
Chen L-P, Zhao N-X, Zhang L-H, Gao Y-B.. 2013. Responses of two dominant plant species to drought stress and defoliation in the Inner Mongolia Steppe of China. Plant Ecology 214: 221–229. doi:10.1007/s11258-012-0161-y. DOI
Dahlgren JP, Bengtsson K, Ehrlén J.. 2016. The demography of climate-driven and density-regulated population dynamics in a perennial plant. Ecology 97: 899–907. doi:10.1890/15-0804.1. PubMed DOI
Dostálek T, Münzbergová Z, Kladivová A, Macel M.. 2016. Plant–soil feedback in native vs. invasive populations of a range expanding plant. Plant and Soil 399: 209–220.
Dostálek T, Pánková H, Münzbergová Z, Rydlová, J.. 2013. The effect of AMF suppression on plant species composition in a nutrient-poor dry grassland. PLoS One 8: e80535. doi:10.1371/journal.pone.0080535. PubMed DOI PMC
Dudenhöffer J-H, Ebeling A, Klein A-M, Wagg C.. 2018. Beyond biomass: soil feedbacks are transient over plant life stages and alter fitness. Journal of Ecology 106: 230–241.
Ehrenfeld JG, Ravit B, Elgersma K.. 2005. Feedback in the plant–soil system. Annual Review of Environment and Resources 30: 75–115. doi:10.1146/annurev.energy.30.050504.144212. DOI
Ehrlén J, Münzbergová Z.. 2009. Timing of flowering: opposed selection on different fitness components and trait covariation. The American Naturalist 173: 819–830. doi:10.1086/598492. PubMed DOI
Florianová A, Münzbergová Z.. 2018. The intensity of intraspecific plant–soil feedbacks in alien Impatiens species depends on the environment. Perspectives in Plant Ecology, Evolution and Systematics 32: 56–64. doi:10.1016/j.ppees.2018.04.004. DOI
Gibson DJ, Connolly J, Hartnett DC, Weidenhamer JD.. 1999. Designs for greenhouse studies of interactions between plants. Journal of Ecology 87: 1–16. doi:10.1046/j.1365-2745.1999.00321.x. DOI
Gundale MJ, Kardol P.. 2021. Multi-dimensionality as a path forward in plant–soil feedback research. Journal of Ecology 109: 3446–3465.
Gurevitch J, Morrow LL, Wallace A, Walsh JS.. 1992. A meta-analysis of competition in field experiments. The American Naturalist 140: 539–572.
van der Heijden MGA, Klironomos JN, Ursic M, et al. . 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72. doi:10.1038/23932. DOI
Hemrová L, Knappová J, Münzbergová, Z.. 2016. Assessment of habitat suitability is affected by plant–soil feedback: comparison of field and garden experiment. PLoS One 11: e0157800. doi:10.1371/journal.pone.0157800. PubMed DOI PMC
Jing J, Bezemer TM, van der Putten WH.. 2015. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant–soil feedback. Basic and Applied Ecology 16: 112–119. doi:10.1016/j.baae.2015.01.001. DOI
Kandlikar GS, Yan X, Levine JM, Kraft NJB.. 2020. Soil microbes generate stronger fitness differences than stabilization among California annual plants. The American Naturalist 197: E30–E39. PubMed
Klinerová T, Dostál P.. 2020. Nutrient-demanding species face less negative competition and plant–soil feedback effects in a nutrient-rich environment. New Phytologist 225: 1343–1354. PubMed
Klironomos JN. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417: 67–70. doi:10.1038/417067a. PubMed DOI
Knappová J, Pánková H, Münzbergová, Z.. 2016. Roles of arbuscular mycorrhizal fungi and soil abiotic conditions in the establishment of a dry grassland community. PLoS One 11: e0158925. doi:10.1371/journal.pone.0158925. PubMed DOI PMC
Kulmatiski A, Beard KH, Stevens JR, Cobbold SM.. 2008. Plant–soil feedbacks: a meta-analytical review. Ecology Letters 11: 980–992. doi:10.1111/j.1461-0248.2008.01209.x. PubMed DOI
Laird RA, Schamp BS.. 2006. Competitive intransitivity promotes species coexistence. The American Naturalist 168: 182–193. doi:10.1086/506259. PubMed DOI
Lamb EG, Cahill JF.. 2006. Consequences of differing competitive abilities between juvenile and adult plants. Oikos 112: 502–512. doi:10.1111/j.0030-1299.2006.14351.x. DOI
Lekberg Y, Bever JD, Bunn RA, et al. . 2018. Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters 21: 1268–1281. doi:10.1111/ele.13093. PubMed DOI
Lekberg Y, Gibbons SM, Rosendahl S, Ramsey, PW.. 2013. Severe plant invasions can increase mycorrhizal fungal abundance and diversity. The ISME Journal 7: 1424–1433. doi:10.1038/ismej.2013.41. PubMed DOI PMC
Mangla S, Inderjit IM, Callaway RM.. 2008. Exotic invasive plant accumulates native soil pathogens which inhibit native plants. Journal of Ecology 96: 58–67.
Maron JL, Smith AL, Ortega YK, Pearson DE, Callaway, RM.. 2016. Negative plant–soil feedbacks increase with plant abundance, and are unchanged by competition. Ecology 97: 2055–2063. PubMed
Meadow JF, Zabinski CA.. 2012. Linking symbiont community structures in a model arbuscular mycorrhizal system. New Phytologist 194: 800–809. doi:10.1111/j.1469-8137.2012.04096.x. PubMed DOI
Miller EC, Perron GG, Collins, CD.. 2019. Plant-driven changes in soil microbial communities influence seed germination through negative feedbacks. Ecology and Evolution 9: 9298–9311. doi:10.1002/ece3.5476. PubMed DOI PMC
Mummey DL, Rillig MC.. 2006. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant and Soil 288: 81–90. doi:10.1007/s11104-006-9091-6. DOI
Münzbergová Z. 2005. Determinants of species rarity: population growth rates of species sharing the same habitat. American Journal of Botany 92: 1987–1994. doi:10.3732/ajb.92.12.1987. PubMed DOI
Münzbergová Z. 2007. Population dynamics of diploid and hexaploid populations of a perennial herb. Annals Botany 100: 1259–1270. PubMed PMC
Münzbergová Z, Kosová V, Schnáblová R, et al. . 2020. Plant origin, but not phylogeny, drive species ecophysiological response to projected climate. Frontiers in Plant Science 11: 400. PubMed PMC
Padilla FM, Mattingly WB, Swedo BL, Clay K, Reynolds HL.. 2012. Negative plant–soil feedbacks dominate seedling competitive interactions of North American successional grassland species. Journal of Vegetation Science 23: 667–676. doi:10.1111/j.1654-1103.2012.01385.x. DOI
Pánková H, Dostálek T, Vazačová K, Münzbergová Z.. 2018. Slow recovery of arbuscular mycorrhizal fungi and plant community after fungicide application: an eight-year experiment. Journal of Vegetation Science 29: 695–703. doi:10.1111/jvs.12656. DOI
Pánková H, Münzbergová Z, Rydlová J, Vosátka M.. 2008. Differences in AM fungal root colonization between populations of perennial Aster species have genetic reasons. Oecologia 157: 211–220. doi:10.1007/s00442-008-1064-4. PubMed DOI
van der Putten WH, Bardgett RD, Bever JD, et al. . 2013. Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology 101: 265–276. doi:10.1111/1365-2745.12054. DOI
R Development Core Team. 2015. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.
Revillini D, Gehring CA, Johnson, NC.. 2016. The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Functional Ecology 30: 1086–1098. doi:10.1111/1365-2435.12668. DOI
Reynolds HL, Packer A, Bever JD, Clay, K.. 2003. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84: 2281–2291. doi:10.1890/02-0298. DOI
Stampfli A, Zeiter M.. 2004. Plant regeneration directs changes in grassland composition after extreme drought: a 13-year study in Southern Switzerland. Journal of Ecology 92: 568–576. doi:10.1111/j.0022-0477.2004.00900.x. DOI
Thakur MP, van der Putten WH, Wilschut RA, et al. . 2021. Plant–soil feedbacks and temporal dynamics of plant diversity–productivity relationships. Trends in Ecology & Evolution 36: 651–661. doi:10.1016/j.tree.2021.03.011. PubMed DOI
Török P, Brudvig LA, Kollmann J, Price JN, Tóthmérész, B.. 2021. The present and future of grassland restoration. Restoration Ecology 29: e13378.
Wild J, Kopecký M, Macek M, Šanda M, Jankovec J, Haase T.. 2019. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agricultural and Forest Meteorology 268: 40–47. doi:10.1016/j.agrformet.2018.12.018. DOI
Wilschut RA, van Kleunen M.. 2021. Drought alters plant-soil feedback effects on biomass allocation but not on plant performance. Plant and Soil 462: 285–296.
Xi N, Bloor JMG, Chu C.. 2020. Soil microbes alter seedling performance and biotic interactions under plant competition and contrasting light conditions. Annals of Botany 126: 1089–1098. doi:10.1093/aob/mcaa134. PubMed DOI PMC
Younginger BS, Sirová D, Cruzan MB, Ballhorn DJ.. 2017. Is biomass a reliable estimate of plant fitness? Applications in Plant Sciences 5: 1600094. PubMed PMC