Plant-soil interactions in the native range of two congeneric species with contrasting invasive success

. 2023 Feb ; 201 (2) : 461-477. [epub] 20230206

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36745217

Grantová podpora
GAČR 20-01813S Grantová Agentura České Republiky

Odkazy

PubMed 36745217
PubMed Central PMC9945059
DOI 10.1007/s00442-023-05329-6
PII: 10.1007/s00442-023-05329-6
Knihovny.cz E-zdroje

The aim of this study was to compare plant-soil interactions in the native range of two congeneric European species differing in their invasive success in the world: a globally invasive Cirsium vulgare and non-invasive C. oleraceum. We assessed changes in soil nutrients and soil biota following soil conditioning by each species and compared performance of plants grown in self-conditioned and unconditioned soil, from which all, some or no biota was excluded. The invasive species depleted more nutrients than the non-invasive species and coped better with altered nutrient levels. The invasive species had higher seedling establishment which benefited from the presence of unconditioned biota transferred by soil filtrate. Biomass of both species increased in soil with self-conditioned soil filtrate and decreased in soil with self-conditioned whole-soil inoculum compared to unconditioned filtrate and inoculum. However, the increase was smaller and the decrease greater for the invasive species. The invasive species allocated less biomass to roots when associated with harmful biota, reducing negative effects of the biota on its performance. The results show that in the native range the invasive species is more limited by self-conditioned pathogens and benefits more from unconditioned mutualists and thus may benefit more from loss of effectively specialized soil biota in a secondary range. Our study highlights the utility of detailed plant-soil feedback research in species native range for understanding factors regulating species performance in their native range and pinpointing the types of biota involved in their regulation.

Zobrazit více v PubMed

Adelman MJ, Morton JB. Infectivity of vesicular arbuscular mycorrhizal fungi - influence of host soil diluent combinations on mpn estimates and percentage colonization. Soil Biol Biochem. 1986;18:77–83. doi: 10.1016/0038-0717(86)90106-9. DOI

Aldorfova A, Munzbergova Z. Conditions of plant cultivation affect the differences in intraspecific plant-soil feedback between invasive and native dominants. Flora. 2019 doi: 10.1016/j.flora.2019.151492. DOI

Aldorfova A, Knobova P, Munzbergova Z. Plant-soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos. 2020;129:1257–1270. doi: 10.1111/oik.07186. DOI

Aldorfova A, Dostalek T, Munzbergova Z. Effects of soil conditioning, root and shoot litter addition interact to determine the intensity of plant-soil feedback. Oikos. 2022 doi: 10.1111/oik.09025. DOI

Ammerman J (2001) Determination of Nitrate/Nitrite in 0,5 M K2SO4 soil extracts by Flow Injection analysis. QuikChem Method 12-107-04-1-H.

Bergmann J, Verbruggen E, Heinze J, Xiang D, Chen BD, Joshi J, Rillig MC. The interplay between soil structure, roots, and microbiota as a determinant of plant-soil feedback. Ecol Evol. 2016;6:7633–7644. doi: 10.1002/ece3.2456. PubMed DOI PMC

Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol. 1997;85:561–573. doi: 10.2307/2960528. DOI

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917. doi: 10.1139/y59-099. PubMed DOI

Brinkman EP, Van der Putten WH, Bakker EJ, Verhoeven KJF. Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. J Ecol. 2010;98:1063–1073. doi: 10.1111/j.1365-2745.2010.01695.x. DOI

Bronstein JL (2003) The scope for exploitation within mutualistic interactions. Genetic and Cultural Evolution of Cooperation: 185–202

Burns JH. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Divers Distrib. 2004;10:387–397. doi: 10.1111/j.1366-9516.2004.00105.x. DOI

Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology. 2011;92:1027–1035. doi: 10.1890/10-0089.1. PubMed DOI

Chiuffo MC, Macdougall AS, Hierro JL. Native and non-native ruderals experience similar plant-soil feedbacks and neighbor effects in a system where they coexist. Oecologia. 2015;179:843–852. doi: 10.1007/s00442-015-3399-y. PubMed DOI

Cortois R, Schroder-Georgi T, Weigelt A, van der Putten WH, De Deyn GB. Plant-soil feedbacks: role of plant functional group and plant traits. J Ecol. 2016;104:1608–1617. doi: 10.1111/1365-2745.12643. DOI

Daehler CC. Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annu Rev Ecol Evol Syst. 2003;34:183–211. doi: 10.1146/annurev.ecolsys.34.011802.132403. DOI

Dassonville N, Vanderhoeven S, Vanparys V, Hayez M, Gruber W, Meerts P. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia. 2008;157:131–140. doi: 10.1007/s00442-008-1054-6. PubMed DOI

Dawson W, Schrama M. Identifying the role of soil microbes in plant invasions. J Ecol. 2016;104:1211–1218. doi: 10.1111/1365-2745.12619. DOI

Dědina J (1987) Selected methods of analytic atom spectrochemistry. Československá spektroskopická společnost

Dostalek T, Knappova J, Munzbergova Z. The role of plant-soil feedback in long-term species coexistence cannot be predicted from its effects on plant performance. Ann Bot. 2022 doi: 10.1093/aob/mcac080. PubMed DOI PMC

Dudenhoffer JH, Ebeling A, Klein AM, Wagg C. Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. J Ecol. 2018;106:230–241. doi: 10.1111/1365-2745.12870. DOI

Egan L (2001) Determination of Amonia by Flow Injection Analysis Colorimetry. QuikChem Metod 10-107-06-5-E.

Ehrenberger F, Gorbach S (1973) Methoden der organischen Elementar- und Spurenanalyse. Verlag Chemie Weinheim

Enders M, Havemann F, Ruland F, Bernard-Verdier M, Catford JA, Gomez-Aparicio L, Haider S, Heger T, Kueffer C, Kuhn I, Meyerson LA, Musseau C, Novoa A, Ricciardi A, Sagouis A, Schittko C, Strayer DL, Vila M, Essl F, Hulme PE, van Kleunen M, Kumschick S, Lockwood JL, Mabey AL, McGeoch MA, Palma E, Pysek P, Saul WC, Yannelli FA, Jeschke JM. A conceptual map of invasion biology: Integrating hypotheses into a consensus network. Glob Ecol Biogeogr. 2020;29:978–991. doi: 10.1111/geb.13082. PubMed DOI PMC

Engelkes T, Morrien E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH. Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature. 2008;456:946–948. doi: 10.1038/nature07474. PubMed DOI

Feldmann F, Idczak E. Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries. Methods Microbiol. 1992;24:339–357. doi: 10.1016/s0580-9517(08)70101-6. DOI

Florianova A, Munzbergova Z. The intensity of intraspecific plant-soil feedbacks in alien Impatiens species depends on the environment. Perspect Plant Ecol Evolut System. 2018;32:56–64. doi: 10.1016/j.ppees.2018.04.004. DOI

Funk JL. Differences in plasticity between invasive and native plants from a low resource environment. J Ecol. 2008;96:1162–1173. doi: 10.1111/j.1365-2745.2008.01435.x. DOI

Funk JL, Vitousek PM. Resource-use efficiency and plant invasion in low-resource systems. Nature. 2007;446:1079–1081. doi: 10.1038/nature05719. PubMed DOI

Gallery RE, Dalling JW, Arnold AE. Diversity, host affinity, and distribution of seed-infecting fungi: A case study with Cecropia. Ecology. 2007;88:582–588. doi: 10.1890/05-1207. PubMed DOI

Garcia-Sanchez M, Cajthaml T, Filipova A, Tlustos P, Szakova J, Garcia-Romera I. Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. J Environ Manag. 2019;247:756–765. doi: 10.1016/j.jenvman.2019.05.101. PubMed DOI

Gioria M, Osborne BA. Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci. 2014 doi: 10.3389/fpls.2014.00501. PubMed DOI PMC

Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980;84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x. DOI

Hannula SE, Heinen R, Huberty M, Steinauer K, De Long JR, Jongen R, Bezemer TM. Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat Commun. 2021 doi: 10.1038/s41467-021-25971-z. PubMed DOI PMC

Hendriks M, Ravenek JM, Smit-Tiekstra AE, van der Paauw JW, de Caluwe H, van der Putten WH, de Kroon H, Mommer L. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition. New Phytol. 2015;207:830–840. doi: 10.1111/nph.13394. PubMed DOI

Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50:346–363. doi: 10.1002/bimj.200810425. PubMed DOI

Janos DP. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza. 2007;17:75–91. doi: 10.1007/s00572-006-0094-1. PubMed DOI

Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 1997;135:575–586. doi: 10.1046/j.1469-8137.1997.00729.x. DOI

Julien MH, Griffiths MW (1998) Biological control of weeds. A world catalogue of agents and their target weeds. CABI Publishing, Wallingford, UK

Kardol P, Cornips NJ, van Kempen MML, Bakx-Schotman JMT, van der Putten WH. Microbe-mediated plant-soil feedback causes historical contingency effects in plant community assembly. Ecol Monogr. 2007;77:147–162. doi: 10.1890/06-0502. DOI

Kardol P, De Deyn GB, Laliberte E, Mariotte P, Hawkes CV. Biotic plant-soil feedbacks across temporal scales. J Ecol. 2013;101:309–315. doi: 10.1111/1365-2745.12046. DOI

Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–170. doi: 10.1016/s0169-5347(02)02499-0. DOI

Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature. 2002;417:67–70. doi: 10.1038/417067a. PubMed DOI

Kulmatiski A, Beard KH, Stevens JR, Cobbold SM. Plant-soil feedbacks: a meta-analytical review. Ecol Lett. 2008;11:980–992. doi: 10.1111/j.1461-0248.2008.01209.x. PubMed DOI

Kulmatiski A, Heavilin J, Beard KH. Testing predictions of a three-species plant-soil feedback model. J Ecol. 2011;99:542–550. doi: 10.1111/j.1365-2745.2010.01784.x. DOI

Kulmatiski A, Kardol P (2008) Getting plant–soil feedbacks out of the greenhouse: experimental and conceptual approaches In: Uea Lüttge (Ed) Progress in Botany. Springer-Verlag, Berlin Heidelberg.

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI

Lekberg Y, Bever JD, Bunn RA, Callaway RM, Hart MM, Kivlin SN, Klironomos J, Larkin BG, Maron JL, Reinhart KO, Remke M, van der Putten WH. Relative importance of competition and plant-soil feedback, their synergy, context dependency and implications for coexistence. Ecol Lett. 2018;21:1268–1281. doi: 10.1111/ele.13093. PubMed DOI

Lepinay C, Vondrakova Z, Dostalek T, Munzbergova Z. Duration of the conditioning phase affects the results of plant-soil feedback experiments via soil chemical properties. Oecologia. 2018;186:459–470. doi: 10.1007/s00442-017-4033-y. PubMed DOI

Mathakutha R, Steyn C, le Roux PC, Blom IJ, Chown SL, Daru BH, Ripley BS, Louw A, Greve M. Invasive species differ in key functional traits from native and non-invasive alien plant species. J Veg Sci. 2019;30:994–1006. doi: 10.1111/jvs.12772. DOI

McGinn KJ, van der Putten WH, Hulme PE, Shelby N, Weser C, Duncan RP. The influence of residence time and geographic extent on the strength of plant-soil feedbacks for naturalised Trifolium. J Ecol. 2018;106:207–217. doi: 10.1111/1365-2745.12864. DOI

Meijer SS, Holmgren M, Van der Putten WH. Effects of plant-soil feedback on tree seedling growth under arid conditions. J Plant Ecol. 2011;4:193–200. doi: 10.1093/jpe/rtr011. DOI

Montesinos D, Callaway RM. Soil origin corresponds with variation in growth of an invasiveCentaurea, but not of non-invasive congeners. Ecology. 2020 doi: 10.1002/ecy.3141. PubMed DOI

Moore PD, Chapman SB. Methods in plant ecology. Oxford: Blackwell Scientific Publications; 1986.

Moorman T, Reeves FB. Role of endomycorrhizae in revegetation practices in the semi-arid West.2. bioassay to determine the effect of land disturbance on endomycorrhizal populations. Am J Bot. 1979;66:14–18. doi: 10.2307/2442619. DOI

Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (Eds) Methods of soil analysis, part 2, Chemical and microbiological properties. American Society of Agronomy, Madison

Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM. Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol. 2003;159:7–10. doi: 10.1046/j.1469-8137.2003.00810.x. PubMed DOI

Oono R, Black D, Slessarev E, Sickler B, Strom A, Apigo A. Species diversity of fungal endophytes across a stress gradient for plants. New Phytol. 2020;228:210–225. doi: 10.1111/nph.16709. PubMed DOI

Parker IM, Gilbert GS. When there is no escape: The effects of natural enemies on native, invasive, and noninvasive plants. Ecology. 2007;88:1210–1224. doi: 10.1890/06-1377. PubMed DOI

Peacher MD, Meiners SJ. Inoculum handling alters the strength and direction of plant-microbe interactions. Ecology. 2020 doi: 10.1002/ecy.2994. PubMed DOI

Perkins LB, Nowak RS. Native and non-native grasses generate common types of plant-soil feedbacks by altering soil nutrients and microbial communities. Oikos. 2013;122:199–208. doi: 10.1111/j.1600-0706.2012.20592.x. DOI

R Core Team A (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

Reinhart KO, Callaway RM. Soil biota facilitate exotic Acer invasions in Europe and North America. Ecol Appl. 2004;14:1737–1745. doi: 10.1890/03-5204. DOI

Reinhart KO, Packer A, Van der Putten WH, Clay K. Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett. 2003;6:1046–1050. doi: 10.1046/j.1461-0248.2003.00539.x. DOI

Richardson DM, Allsopp N, D'Antonio CM, Milton SJ, Rejmanek M. Plant invasions - the role of mutualisms. Biol Rev. 2000;75:65–93. doi: 10.1017/s0006323199005435. PubMed DOI

Rinella MJ, Reinhart KO. Toward more robust plant-soil feedback research: reply. Ecology. 2019 doi: 10.1002/ecy.2810. PubMed DOI

Rosseel Y. lavaan: An R package for structural equation modeling. J Stat Softw. 2012;48:1–36. doi: 10.18637/jss.v048.i02. DOI

Sampedro I, Giubilei M, Cajthaml T, Federici E, Federici F, Petruccioli M, D'Annibale A. Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Biores Technol. 2009;100:6098–6106. doi: 10.1016/j.biortech.2009.06.026. PubMed DOI

Sanders IR. Preference, specificity and cheating in the arbuscular mycorrhizal symbiosis. Trends Plant Sci. 2003;8:143–145. doi: 10.1016/s1360-1385(03)00012-8. PubMed DOI

Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Sigurdsson BD, Chen HYH, Penuelas J. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob Change Biol. 2017;23:1282–1291. doi: 10.1111/gcb.13384. PubMed DOI

Semchenko M, Barry KE, de Vries FT, Mommer L, Moora M, Macia-Vicente JG. Deciphering the role of specialist and generalist plant-microbial interactions as drivers of plant-soil feedback. New Phytol. 2022;234:1929–1944. doi: 10.1111/nph.18118. PubMed DOI

Shannon S, Flory SL, Reynolds H. Competitive context alters plant-soil feedback in an experimental woodland community. Oecologia. 2012;169:235–243. doi: 10.1007/s00442-011-2195-6. PubMed DOI

Sieg CH, Phillips BG, Moser LP (2003) Exotic invasive plants. In: Frederici P (Ed) Ecological Restoration of Southwestern Ponderosa Pine Forests. Island Press, Washington, DC.

Snajdr J, Valaskova V, Merhautova V, Cajthaml T, Baldrian P. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb Technol. 2008;43:186–192. doi: 10.1016/j.enzmictec.2007.11.008. DOI

Sturmer SL, Bever JD, Morton JB. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota) a phylogenetic perspective on species distribution patterns. Mycorrhiza. 2018;28:587–603. doi: 10.1007/s00572-018-0864-6. PubMed DOI

Suding KN, Harpole WS, Fukami T, Kulmatiski A, MacDougall AS, Stein C, van der Putten WH. Consequences of plant-soil feedbacks in invasion. J Ecol. 2013;101:298–308. doi: 10.1111/1365-2745.12057. DOI

Tenhumberg B, Louda SM, Eckberg JO, Takahashi M. Monte Carlo analysis of parameter uncertainty in matrix models for the weed Cirsium vulgare. J Appl Ecol. 2008;45:438–447. doi: 10.1111/j.1365-2664.2007.01427.x. DOI

ter Braak CJ, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca

van de Voorde TFJ, van der Putten WH, Bezemer TM. Intra- and interspecific plant-soil interactions, soil legacies and priority effects during old-field succession. J Ecol. 2011;99:945–953. doi: 10.1111/j.1365-2745.2011.01815.x. DOI

van de Voorde TFJ, van der Putten WH, Bezemer TM. Soil inoculation method determines the strength of plant-soil interactions. Soil Biol Biochem. 2012;55:1–6. doi: 10.1016/j.soilbio.2012.05.020. DOI

van der Putten WH, Klironomos JN, Wardle DA. Microbial ecology of biological invasions. ISME J. 2007;1:28–37. doi: 10.1038/ismej.2007.9. PubMed DOI

van Grunsven RHA, van der Putten WH, Bezemer TM, Tamis WLM, Berendse F, Veenendaal EM. Reduced plant-soil feedback of plant species expanding their range as compared to natives. J Ecol. 2007;95:1050–1057. doi: 10.1111/j.1365-2745.2007.01282.x. DOI

van Grunsven RHA, van der Putten WH, Bezemer TM, Veenendaal EM. Plant-soil feedback of native and range-expanding plant species is insensitive to temperature. Oecologia. 2010;162:1059–1069. doi: 10.1007/s00442-009-1526-3. PubMed DOI PMC

Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–5270. doi: 10.1073/pnas.1320054111. PubMed DOI PMC

Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019 doi: 10.1038/s41467-019-12798-y. PubMed DOI PMC

Wang P, Zhang XY, Kong CH. The response of allelopathic rice growth and microbial feedback to barnyardgrass infestation in a paddy field experiment. Eur J Soil Biol. 2013;56:26–32. doi: 10.1016/j.ejsobi.2013.01.006. DOI

Wang MG, De Deyn GB, Bezemer TM. Separating effects of soil microorganisms and nematodes on plant community dynamics. Plant Soil. 2019;441:455–467. doi: 10.1007/s11104-019-04137-3. DOI

Wang MG, Ruan WB, Kostenko O, Carvalho S, Hannula SE, Mulder PPJ, Bu FJ, van der Putten WH, Bezemer TM. Removal of soil biota alters soil feedback effects on plant growth and defense chemistry. New Phytol. 2019;221:1478–1491. doi: 10.1111/nph.15485. PubMed DOI PMC

Wild J, Kaplan Z, Danihelka J, Petrik P, Chytry M, Novotny P, Rohn M, Sule V, Bruna J, Chobot K, Ekrt L, Holubova D, Knollova I, Kocian P, Stech M, Stepanek J, Zouhar V. Plant distribution data for the Czech Republic integrated in the Pladias database. Preslia. 2019;91:1–24. doi: 10.23855/preslia.2019.001. DOI

Wilschut RA, van Kleunen M. Drought alters plant-soil feedback effects on biomass allocation but not on plant performance. Plant Soil. 2021;462:285–296. doi: 10.1007/s11104-021-04861-9. DOI

Wilson JM, Trinick MJ. Factors affecting the estimation of numbers of infective propagules of vesicular arbuscular mycorrhizal fungi by the most probable number method. Aust J Soil Res. 1983;21:73–81. doi: 10.1071/sr9830073. DOI

Zuppinger-Dingley D, Schmid B, Chen Y, Brandl H, van der Heijden MGA, Joshi J. In their native range, invasive plants are held in check by negative soil-feedbacks. Ecosphere. 2011;2:12. doi: 10.1890/es11-00061.1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace