Relative entropy is an easy-to-use invasive electroencephalographic biomarker of the epileptogenic zone
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
R01 NS092882
NINDS NIH HHS - United States
PubMed
36764672
DOI
10.1111/epi.17539
Knihovny.cz E-zdroje
- Klíčová slova
- SOZ localization, drug-resistant epilepsy, iEEG,
- MeSH
- biologické markery MeSH
- elektroencefalografie * metody MeSH
- elektrokortikografie metody MeSH
- entropie MeSH
- epilepsie * diagnóza chirurgie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- biologické markery MeSH
OBJECTIVE: High-frequency oscillations are considered among the most promising interictal biomarkers of the epileptogenic zone in patients suffering from pharmacoresistant focal epilepsy. However, there is no clear definition of pathological high-frequency oscillations, and the existing detectors vary in methodology, performance, and computational costs. This study proposes relative entropy as an easy-to-use novel interictal biomarker of the epileptic tissue. METHODS: We evaluated relative entropy and high-frequency oscillation biomarkers on intracranial electroencephalographic data from 39 patients with seizure-free postoperative outcome (Engel Ia) from three institutions. We tested their capability to localize the epileptogenic zone, defined as resected contacts located in the seizure onset zone. The performance was compared using areas under the receiver operating curves (AUROCs) and precision-recall curves. Then we tested whether a universal threshold can be used to delineate the epileptogenic zone across patients from different institutions. RESULTS: Relative entropy in the ripple band (80-250 Hz) achieved an average AUROC of .85. The normalized high-frequency oscillation rate in the ripple band showed an identical AUROC of .85. In contrast to high-frequency oscillations, relative entropy did not require any patient-level normalization and was easy and fast to calculate due to its clear and straightforward definition. One threshold could be set across different patients and institutions, because relative entropy is independent of signal amplitude and sampling frequency. SIGNIFICANCE: Although both relative entropy and high-frequency oscillations have a similar performance, relative entropy has significant advantages such as straightforward definition, computational speed, and universal interpatient threshold, making it an easy-to-use promising biomarker of the epileptogenic zone.
Central European Institute of Technology Masaryk University Brno Czech Republic
Institute of Scientific Instruments Czech Academy of Sciences Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
Zobrazit více v PubMed
Leonardi M, Ustun TB. The global burden of epilepsy. Epilepsia. 2002;43(Suppl 6):21-5.
Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345:311-8. https://doi.org/10.1056/nejm200108023450501
Téllez-Zenteno JF, Moien-Afshari F, Hernández-Ronquillo L, Griebel R, Sadanand V. Reasons for reoperation after epilepsy surgery: a review based on a complex clinical case with three operations. Neuropsychiatr Dis Treat. 2010;6:409-15.
Van Gompel JJ, Worrell GA, Bell ML, Patrick TA, Cascino GD, Raffel C, et al. Intracranial electroencephalography with subdural grid electrodes: techniques, complications, and outcomes. Neurosurgery. 2008;63(3):498-505. discussion 505-6.
de Curtis M, Avanzini G. Interictal spikes in focal epileptogenesis. Prog Neurobiol. 2001;63(5):541-67.
Bragin A, Engel J, Wilson CL, Fried I, Buzsáki G. High-frequency oscillations in human brain. Hippocampus. 1999;9:137-42. https://doi.org/10.1002/(sici)1098-1063(1999)9:2<137::aid-hipo5>3.0.co;2-0
Frauscher B, Bartolomei F, Kobayashi K, Cimbalnik J, van't Klooster MA, Rampp S, et al. High-frequency oscillations: the state of clinical research. Epilepsia. 2017;58(8):1316-29.
Fedele T, Burnos S, Boran E, Krayenbühl N, Hilfiker P, Grunwald T, et al. Resection of high frequency oscillations predicts seizure outcome in the individual patient. Sci Rep. 2017;7(1):13836.
Cimbalnik J, Brinkmann B, Kremen V, Jurak P, Berry B, Gompel JV, et al. Physiological and pathological high frequency oscillations in focal epilepsy. Ann Clin Transl Neurol. 2018;5(9):1062-76.
Jacobs J, Wu JY, Perucca P, Zelmann R, Mader M, Dubeau F, et al. Removing high-frequency oscillations: a prospective multicenter study on seizure outcome. Neurology. 2018;91(11):e1040-52.
Zweiphenning W, Klooster MA, van Klink NE, Leijten FS, Ferrier CH, Gebbink T, et al. Intraoperative electrocorticography using high-frequency oscillations or spikes to tailor epilepsy surgery in The Netherlands (the HFO trial): a randomised, single-blind, adaptive non-inferiority trial. Lancet Neurol. 2022;21(11):982-93.
Spring AM, Pittman DJ, Aghakhani Y, Jirsch J, Pillay N, Bello-Espinosa LE, et al. Interrater reliability of visually evaluated high frequency oscillations. Clin Neurophysiol. 2017;128(3):433-41.
Navarrete M, Pyrzowski J, Corlier J, Valderrama M, Le Van Quyen M. Automated detection of high-frequency oscillations in electrophysiological signals: methodological advances. J Physiol Paris. 2016;110(4 Pt A):316-26.
Matsumoto A, Brinkmann BH, Matthew Stead S, Matsumoto J, Kucewicz MT, Marsh WR, et al. Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol. 2013;110(8):1958-64.
Kucewicz MT, Cimbalnik J, Matsumoto JY, Brinkmann BH, Bower MR, Vasoli V, et al. High frequency oscillations are associated with cognitive processing in human recognition memory. Brain. 2014;137(Pt 8):2231-44.
Guragain H, Cimbalnik J, Stead M, Groppe DM, Berry BM, Kremen V, et al. Spatial variation in high-frequency oscillation rates and amplitudes in intracranial EEG. Neurology. 2018;90(8):e639-46.
Frauscher B, von Ellenrieder N, Zelmann R, Rogers C, Nguyen DK, Kahane P, et al. High-frequency oscillations in the Normal human brain. Ann Neurol. 2018;84(3):374-85.
Bettus G, Wendling F, Guye M, Valton L, Régis J, Chauvel P, et al. Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res. 2008;81(1):58-68.
Dauwels J, Eskandar E, Cash S. Localization of seizure onset area from intracranial non-seizure EEG by exploiting locally enhanced synchrony. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2180-3.
Demuru M, Kalitzin S, Zweiphenning W, van Blooijs D, van’t Klooster M, Van Eijsden P, et al. To resect or not to resect? Unbiased performances of single and combined biomarkers in intra-operative corticography for tailoring during epilepsy surgery. medRxiv. https://doi.org/10.1101/2019.12.26.19015883
Van Mierlo P, Papadopoulou M, Carrette E, Boon P, Vandenberghe S, Vonck K, et al. Functional brain connectivity from EEG in epilepsy: seizure prediction and epileptogenic focus localization. Prog Neurobiol. 2014;121:19-35. https://doi.org/10.1016/j.pneurobio.2014.06.004
Pincus SM. Assessing serial irregularity and its implications for health. Ann N Y Acad Sci. 2006;954:245-67. https://doi.org/10.1111/j.1749-6632.2001.tb02755.x
Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):68102.
Sato Y, Ochi A, Mizutani T, Otsubo H. Low entropy of interictal gamma oscillations is a biomarker of the seizure onset zone in focal cortical dysplasia type II. Epilepsy Behav. 2019;96:155-9.
Ben-Jacob E, Doron I, Gazit T, Rephaeli E, Sagher O, Towle VL. Mapping and assessment of epileptogenic foci using frequency-entropy templates. Phys Rev E Stat Nonlin Soft Matter Phys. 2007;76(5 Pt 1):51903.
Gazit T, Doron I, Sagher O, Kohrman MH, Towle VL, Teicher M, et al. Time-frequency characterization of electrocorticographic recordings of epileptic patients using frequency-entropy similarity: a comparison to other bi-variate measures. J Neurosci Methods. 2011;194(2):358-73.
Mooij AH, Frauscher B, Amiri M, Otte WM, Gotman J. Differentiating epileptic from non-epileptic high frequency intracerebral EEG signals with measures of wavelet entropy. Clin Neurophysiol. 2016;127(12):3529-36.
Klimes P, Duque JJ, Brinkmann B, Van Gompel J, Stead M, St Louis EK, et al. The functional organization of human epileptic hippocampus. J Neurophysiol. 2016;115(6):3140-5.
Warren CP, Hu S, Stead M, Brinkmann BH, Bower MR, Worrell GA. Synchrony in normal and focal epileptic brain: the seizure onset zone is functionally disconnected. J Neurophysiol. 2010;104(6):3530-9.
Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: an open signal processing software platform. Physiol Meas. 2016;37(7):N38-48.
Spanedda F, Cendes F, Gotman J. Relations between EEG seizure morphology, interhemispheric spread, and mesial temporal atrophy in bitemporal epilepsy. Epilepsia. 1997;38(12):1300-14.
Kullback S, Leibler RA. On information and sufficiency [internet]. Ann Math Stat. 1951;22:79-86. https://doi.org/10.1214/aoms/1177729694
Gardner AB, Worrell GA, Marsh E, Dlugos D, Litt B. Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin Neurophysiol. 2007;118(5):1134-43.
Klimes P, Cimbalnik J, Brazdil M, Hall J, Dubeau F, Gotman J, et al. NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram. Epilepsia. 2019;60(12):2404-15.
Roehri N, Pizzo F, Lagarde S, Lambert I, Nica A, McGonigal A, et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes [internet]. Ann Neurol. 2018;83:84-97. https://doi.org/10.1002/ana.25124
Cimbalnik J, Klimes P, Sladky V, Nejedly P, Jurak P, Pail M, et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin Neurophysiol. 2019;130(10):1945-53.
Cimbalnik J KPTV. Epycom: ElectroPhYsiology COmputational Module. Available from: https://gitlab.com/icrc-bme/epycom [accessed 26 February 2022].
Cimbálník J, Hewitt A, Worrell G, Stead M. The CS algorithm: a novel method for high frequency oscillation detection in EEG [internet]. J Neurosci Methods. 2018;293:6-16. https://doi.org/10.1016/j.jneumeth.2017.08.023
Zelmann R, Mari F, Jacobs J, Zijlmans M, Dubeau F, Gotman J. A comparison between detectors of high frequency oscillations. Clin Neurophysiol. 2012;123(1):106-16.
Gliske SV, Irwin ZT, Chestek C, Hegeman GL, Brinkmann B, Sagher O, et al. Variability in the location of high frequency oscillations during prolonged intracranial EEG recordings. Nat Commun. 2018;9(1):2155.
Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, et al. Cycles in epilepsy. Nat Rev Neurol. 2021;17(5):267-84.
Multicentre analysis of seizure outcome predicted by removal of high-frequency oscillations