Leveraging interictal multimodal features and graph neural networks for automated planning of epilepsy surgery
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40357016
PubMed Central
PMC12066826
DOI
10.1093/braincomms/fcaf140
PII: fcaf140
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, epilepsy, graph neural networks, iEEG, surgery,
- Publikační typ
- časopisecké články MeSH
Precise localization of the epileptogenic zone is pivotal for planning minimally invasive surgeries in drug-resistant epilepsy. Here, we present a graph neural network (GNN) framework that integrates interictal intracranial EEG features, electrode topology, and MRI features to automate epilepsy surgery planning. We retrospectively evaluated the model using leave-one-patient-out cross-validation on a dataset of 80 drug-resistant epilepsy patients treated at St. Anne's University Hospital (Brno, Czech Republic), comprising 31 patients with good postsurgical outcomes (Engel I) and 49 with poor outcomes (Engel II-IV). The GNN predictions demonstrated a significantly better (P < 0.05, Mann-Whitney-U test) area under the precision-recall curve in patients with good outcomes (area under the precision-recall curve: 0.69) compared with those with poor outcomes (area under the precision-recall curve: 0.33), indicating that the model captures clinically relevant targets in successful cases. In patients with poor outcomes, the graph neural network proposed alternative intervention sites that diverged from the original clinical plans, highlighting its potential to identify alternative therapeutic targets. We show that topology-aware GNNs significantly outperformed (P < 0.05, Wilcoxon signed-rank test) traditional neural networks while using the same intracranial EEG features, emphasizing the importance of incorporating implantation topology into predictive models. These findings uncover the potential of GNNs to automatically suggest targets for epilepsy surgery, which can assist the clinical team during the planning process.
Department of Biomedical Engineering Pratt School of Engineering Duke University Durham NC 27705 USA
Department of Neurology Duke University Medical Center Durham NC 27705 USA
Department of Neurology Mayo Clinic Rochester MN 55905 USA
Department of Physiology and Biomedical Engineering Mayo Clinic Rochester MN 55905 USA
Institute of Scientific Instruments The Czech Academy of Sciences Brno 612 00 Czech Republic
International Clinical Research Center St Anne's University Hospital Brno 602 00 Czech Republic
Zobrazit více v PubMed
Frauscher B. Localizing the epileptogenic zone. Curr Opin Neurol. 2020;33(2):198–206. PubMed
Worrell GA, Gardner AB, Stead SM, et al. High-frequency oscillations in human temporal lobe: Simultaneous microwire and clinical macroelectrode recordings. Brain J Neurol. 2008;131(Pt 4):928–937. PubMed PMC
Brázdil M, Pail M, Halámek J, et al. Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Ann Neurol. 2017;82(2):299–310. PubMed
Janca R, Jezdik P, Cmejla R, et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings. Brain Topogr. 2015;28(1):172–183. PubMed
Travnicek V, Klimes P, Cimbalnik J, et al. Relative entropy is an easy-to-use invasive electroencephalographic biomarker of the epileptogenic zone. Epilepsia. 2023;64(4):962–972. PubMed
Cimbalnik J, Klimes P, Sladky V, et al. Multi-feature localization of epileptic foci from interictal, intracranial EEG. Clin Neurophysiol. 2019;130(10):1945–1953. PubMed PMC
Chybowski B, Klimes P, Cimbalnik J, et al. Timing matters for accurate identification of the epileptogenic zone. Clin Neurophysiol. 2024;161:1–9. PubMed
Klimes P, Nejedly P, Hrtonova V, et al. Interictal stereo-electroencephalography features below 45 Hz are sufficient for correct localization of the epileptogenic zone and postsurgical outcome prediction. Epilepsia. 2024;65:2935–2945. PubMed
Gunnarsdottir KM, Li A, Smith RJ, et al. Source-sink connectivity: A novel interictal EEG marker for seizure localization. Brain. 2022;145(11):3901–3915. PubMed PMC
Bernabei JM, Sinha N, Arnold TC, et al. Normative intracranial EEG maps epileptogenic tissues in focal epilepsy. Brain. 2022;145(6):1949–1961. PubMed PMC
Conrad EC, Revell AY, Greenblatt AS, et al. Spike patterns surrounding sleep and seizures localize the seizure-onset zone in focal epilepsy. Epilepsia. 2023;64(3):754–768. PubMed PMC
Říha P, Doležalová I, Mareček R, et al. Multimodal combination of neuroimaging methods for localizing the epileptogenic zone in MR-negative epilepsy. Sci Rep. 2022;12(1):15158. PubMed PMC
Li X, Yu T, Ren Z, et al. Localization of the epileptogenic zone by multimodal neuroimaging and high-frequency oscillation. Front Hum Neurosci. 2021;15:677840. PubMed PMC
Zhou J, Cui G, Hu S, et al. Graph neural networks: A review of methods and applications. AI Open. 2020;1:57–81.
Mohammed AH, Cabrerizo M, Pinzon A, Yaylali I, Jayakar P, Adjouadi M. Graph neural networks in EEG spike detection. Artif Intell Med. 2023;145:102663. PubMed
Lian Q, Qi Y, Pan G, Wang Y. Learning graph in graph convolutional neural networks for robust seizure prediction. J Neural Eng. 2020;17(3):035004. PubMed
Li Z, Hwang K, Li K, Wu J, Ji T. Graph-generative neural network for EEG-based epileptic seizure detection via discovery of dynamic brain functional connectivity. Sci Rep. 2022;12(1):18998. PubMed PMC
Zhao Y, Zhang G, Dong C, Yuan Q, Xu F, Zheng Y. Graph attention network with focal loss for seizure detection on electroencephalography signals. Int J Neural Syst. 2021;31(7):2150027. PubMed
Díaz-Montiel AA, Lankarany M. Graph Representations of iEEG Data for Seizure Detection with Graph Neural Networks. bioRxiv. [Preprint] doi:10.1101/2023.06.02.543277 DOI
Jia Z, Lin Y, Wang J, et al. Graphsleepnet: Adaptive spatial-temporal graph convolutional networks for sleep stage classification. In: IJCAI'20: Twenty-Ninth International Joint Conference on Artificial Intelligence Yokohama Yokohama, Japan, January 7-15, 2021. International Joint Conferences on Artificial Intelligence Organization. 2020:1324-1330.
Jehi L. Machine learning for precision epilepsy surgery. Epilepsy Curr. 2023;23(2):78–83. PubMed PMC
Engel J. Surgical treatment of the epilepsies. 2nd edn. Raven Press; 1993.
Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, eds . Statistical Parametric Mapping: The Analysis of Functional Brain Images. 2006. Accessed 15 August 2024. https://shop.elsevier.com/books/statistical-parametric-mapping-the-analysis-of-functional-brain-images/penny/978-0-12-372560-8
Kleinberg JM. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM). 1999;46:604–632.
Roehri N, Pizzo F, Lagarde S, et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann Neurol. 2018;83(1):84–97. PubMed
von Ellenrieder N, Andrade-Valença LP, Dubeau F, Gotman J. Automatic detection of fast oscillations (40–200 Hz) in scalp EEG recordings. Clin Neurophysiol. 2012;123(4):670–680. PubMed PMC
von Ellenrieder N, Frauscher B, Dubeau F, Gotman J. Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80–500 Hz). Epilepsia. 2016;57(6):869–878. PubMed
von Ellenrieder N, Khoo HM, Dubeau F, Gotman J. What do intracerebral electrodes measure? Clin Neurophysiol. 2021;132(5):1105–1115. PubMed
Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph Attention Networks. arXiv.Org [Preprint]. 2017. http://arxiv.org/abs/1710.10903
Hrtonova V, Nejedly P, Travnicek V, et al. Metrics for evaluation of automatic epileptogenic zone localization in intracranial electrophysiology. Clin Neurophysiol. 2025;169:33–46. PubMed
Hess M, Kromney J. Robust confidence intervals for effect sizes: A comparative study of Cohen’s d and cliff’s Delta under non-normality and heterogeneous variances. In: Paper Presented at the Annual Meeting of the American Educational Research Association; 2004.
Bernabei JM, Li A, Revell AY, et al. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain. 2023;146(6):2248–2258. PubMed PMC
Rusch TK, Bronstein MM, Mishra S. A Survey on Oversmoothing in Graph Neural Networks. arXiv [Preprint]. doi:10.48550/arXiv.2303.10993 DOI
Kipf TN, Welling M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv [Preprint]. doi:10.48550/arXiv.1609.02907 DOI
Guo MH, Cai JX, Liu ZN, Mu TJ, Martin RR, Hu SM. PCT: Point cloud transformer. Comput Vis Media. 2021;7(2):187–199.
Klimes P, Cimbalnik J, Brazdil M, et al. NREM sleep is the state of vigilance that best identifies the epileptogenic zone in the interictal electroencephalogram. Epilepsia. 2019;60(12):2404–2415. PubMed