Boar Sperm Cryopreservation Improvement Using Semen Extender Modification by Dextran and Pentaisomaltose
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ02000219
Technology Agency of the Czech Republic
RVO: 86652036
Institute of Biotechnology of the Czech Academy of Sciences
CZ.1.05/1.1.00/02.0109
BIOCEV from the ERDF
SV21-9-21230
Czech University of Life Sciences Prague
PubMed
35405857
PubMed Central
PMC8997129
DOI
10.3390/ani12070868
PII: ani12070868
Knihovny.cz E-zdroje
- Klíčová slova
- AWN spermadhesin, boar sperm, cryopreservation, dextran, glycerol, pentaisomaltose, polysaccharide, reproduction,
- Publikační typ
- časopisecké články MeSH
The long-term storage of boar sperm presents an ongoing challenge, and the modification of the cryoprotective compounds in semen extenders is crucial for improving cryopreservation's success rate. The aim of our study was to reduce the percentage of glycerol in the extender by elimination or substitution with biocompatible, non-toxic polysaccharides. For boar semen extender improvement, we tested a novel modification with the polysaccharides dextran and pentaisomaltose in combination with unique in silico predictive modeling. We targeted the analysis of in vitro qualitative sperm parameters such as motility, viability, mitochondrial activity, acrosome integrity, and DNA integrity. Non-penetrating polysaccharide-based cryoprotective agents interact with sperm surface proteins such as spermadhesins, which are recognized as fertility markers of boar sperm quality. The in silico docking study showed a moderate binding affinity of dextran and pentaisomaltose toward one specific spermadhesin known as AWN, which is located in the sperm plasma membrane. Pentaisomaltose formed a hydrophobic pocket for the AWN protein, and the higher energy of this protein-ligand complex compared with dextran was calculated. In addition, the root mean square deviation (RMSD) analysis for the molecular dynamics (MD) of both polysaccharides and AWN simulation suggests their interaction was highly stable. The in silico results were supported by in vitro experiments. In the experimental groups where glycerol was partially or entirely substituted, the use of pentaisomaltose resulted in improved sperm mitochondrial activity and DNA integrity after thawing when compared with dextran. In this paper, we demonstrate that pentaisomaltose, previously used for cryopreservation in hematopoietic stem cells, represents a promising compound for the elimination or reduction of glycerol in extenders for boar semen cryopreservation. This novel approach, using in silico computer prediction and in vitro testing, represents a promising technique to help identify new cryoprotectants for use in animal breeding or genetic resource programs.
Zobrazit více v PubMed
Yeste M. Sperm cryopreservation update: Cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology. 2016;85:47–64. doi: 10.1016/j.theriogenology.2015.09.047. PubMed DOI
Jovičić M., Chmelíková E., Sedmíková M. Cryopreservation of boar semen. Czech J. Anim. Sci. 2020;65:115–123. doi: 10.17221/47/2020-CJAS. DOI
Mazur P., Leibo S.P., Seidel G.E. Cryopreservation of the Germplasm of Animals Used in Biological and Medical Research: Importance, Impact, Status, and Future Directions. Biol. Reprod. 2008;78:2–12. doi: 10.1095/biolreprod.107.064113. PubMed DOI
Techakumphu M., Buranaamnuay K., Tantasuparuk W., Am-I N. Improvement of Semen Quality by Feed Supplement and Semen Cryopreservation in Swine. In: Lemma A., editor. Success in Artificial Insemination—Quality of Semen and Diagnostics Employed. 1st ed. InTech; Rijeka, Croatia: 2013. pp. 17–37.
Hammerstedt R.H., Graham J.K., Nolan J.P. Cryopreservation of mammalian sperm: What we ask them to survive. J. Androl. 1990;11:73–88. PubMed
Watson P.F. The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 2000;60–61:481–492. doi: 10.1016/S0378-4320(00)00099-3. PubMed DOI
Layek S.S., Mohanty T.K., Kumaresan A., Parks J.E. Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Anim. Reprod. Sci. 2016;172:1–9. doi: 10.1016/j.anireprosci.2016.04.013. PubMed DOI
Koshimoto C., Gamliel E., Mazur P. Effect of Osmolality and Oxygen Tension on the Survival of Mouse Sperm Frozen to Various Temperatures in Various Concentrations of Glycerol and Raffinose. Cryobiology. 2000;41:204–231. doi: 10.1006/cryo.2000.2281. PubMed DOI
Büyükleblebici S., Tuncer P.B., Bucak M.N., Eken A., Sarıözkan S., Taşdemir U., Endirlik B.Ü. Cryopreservation of bull sperm: Effects of extender supplemented with different cryoprotectants and antioxidants on sperm motility, antioxidant capacity and fertility results. Anim. Reprod. Sci. 2014;150:77–83. doi: 10.1016/j.anireprosci.2014.09.006. PubMed DOI
Holt W.V. Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 2000;62:3–22. doi: 10.1016/S0378-4320(00)00152-4. PubMed DOI
Ciani F., Cocchia N., Esposito L., Avallone L. Fertility cryopreservation. In: Wu B., editor. Advances in Embryo Transfer. 1st ed. InTech; Rijeka, Croatia: 2012. pp. 225–248.
Sieme H. Semen extenders for frozen semen. In: McKinnon A.O., editor. Equine Reproduction. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2011. pp. 296–297.
Graham J.K. Principles of cryopreservation. In: McKinnon A.O., editor. Equine Reproduction. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2011. pp. 2959–2963.
Fahy G.M. The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology. 1986;23:1–13. doi: 10.1016/0011-2240(86)90013-1. PubMed DOI
Hammerstedt R.H., Graham J.K. Cryopreservation of poultry sperm: The enigma of glycerol. Cryobiology. 1992;29:26–38. doi: 10.1016/0011-2240(92)90004-L. PubMed DOI
Watson P. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 1995;7:871. doi: 10.1071/RD9950871. PubMed DOI
Slavik T. Effect of glycerol on the penetrating ability of fresh ram spermatozoa with zona-free hamster eggs. Reproduction. 1987;79:99–103. doi: 10.1530/jrf.0.0790099. PubMed DOI
Neville W.J., Macpherson J.W., Reinhart B. The Contraceptive Action of Glycerol in Chickens. Poult. Sci. 1971;50:1411–1415. doi: 10.3382/ps.0501411. PubMed DOI
Abdelhakeam A.A., Graham E.F., Vazquez I.A. Studies on the presence and absence of glycerol in unfrozen and frozen ram semen: Fertility trials and the effect of dilution methods on freezing ram semen in the absence of glycerol. Cryobiology. 1991;28:36–42. doi: 10.1016/0011-2240(91)90005-9. DOI
Wilmut I., Polge C. The fertilizing capacity of boar semen stored in the presence of glycerol at 20, 5 and −79 °C. Reproduction. 1974;38:105–113. doi: 10.1530/jrf.0.0380105. PubMed DOI
Demick D.S., Voss J.L., Pickett B.W. Effect of Cooling, Storage, Glycerolization and Spermatozoal Numbers on Equine Fertility1. J. Anim. Sci. 1976;43:633–637. doi: 10.2527/jas1976.433633x. PubMed DOI
Holt W.V. Alternative strategies for the long-term preservation of spermatozoa. Reprod. Fertil. Dev. 1997;9:309. doi: 10.1071/R96082. PubMed DOI
Manásková P., Mészárosová A., Liberda J., Voburka Z., Tichá M., Jonáková V. Aggregated forms of heparin-binding and non-heparin-binding proteins of boar seminal plasma and their binding properties. Folia Biol. 1999;45:193–201. PubMed
Jonáková V., Manásková P., Kraus M., Liberda J., Tichá M. Sperm surface proteins in mammalian fertilization. Mol. Reprod. Dev. 2000;56:275–277. doi: 10.1002/(SICI)1098-2795(200006)56:2+<275::AID-MRD13>3.0.CO;2-G. PubMed DOI
Töpfer-Petersen E., Romero A., Varela P.F., Ekhlasi-Hundrieser M., Dostálová Z., Sanz L., Calvete J.J. Spermadhesins: A new protein family. Facts, hypotheses and perspectives. Andrologia. 1998;30:217–224. doi: 10.1111/j.1439-0272.1998.tb01163.x. PubMed DOI
Novak S., Ruiz-Sanchez A., Dixon W.T., Foxcroft G.R., Dyck M.K. Seminal Plasma Proteins as Potential Markers of Relative Fertility in Boars. J. Androl. 2010;31:188–200. doi: 10.2164/jandrol.109.007583. PubMed DOI
Sur V.P., Sen M.K., Komrskova K. In Silico Identification and Validation of Organic Triazole Based Ligands as Potential Inhibitory Drug Compounds of SARS-CoV-2 Main Protease. Molecules. 2021;26:6199. doi: 10.3390/molecules26206199. PubMed DOI PMC
Assal R., Abou-Elkacem L., Tocchio A., Pasley S., Matosevic S., Kaplan D.L., Zylberberg C., Demirci U. Bioinspired Preservation of Natural Killer Cells for Cancer Immunotherapy. Adv. Sci. 2019;6:1802045. doi: 10.1002/advs.201802045. PubMed DOI PMC
Svalgaard J.D., Munthe-Fog L., Ballesteros O.R., Brooks P.T., Rangatchew F., Vester-Glowinski P.V., Haastrup E.K., Fischer-Nielsen A. Cryopreservation of adipose-derived stromal/stem cells using 1–2% Me2SO (DMSO) in combination with pentaisomaltose: An effective and less toxic alternative to comparable freezing media. Cryobiology. 2020;96:207–213. doi: 10.1016/j.cryobiol.2020.05.014. PubMed DOI
Svalgaard J.D., Talkhoncheh M.S., Haastrup E.K., Munthe-Fog L., Clausen C., Hansen M.B., Andersen P., Gørløv J.S., Larsson J., Fischer-Nielsen A. Pentaisomaltose, an Alternative to DMSO. Engraftment of Cryopreserved Human CD34+ Cells in Immunodeficient NSG Mice. Cell Transplant. 2018;27:1407–1412. doi: 10.1177/0963689718786226. PubMed DOI PMC
Svalgaard J.D., Haastrup E.K., Reckzeh K., Holst B., Glovinski P.V., Gørløv J.S., Hansen M.B., Moench K.T., Clausen C., Fischer-Nielsen A. Low-molecular-weight carbohydrate Pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells. Transfusion. 2016;56:1088–1095. doi: 10.1111/trf.13543. PubMed DOI
Sur V.P., Mazumdar A., Vimberg V., Stefani T., Androvic L., Kracikova L., Laga R., Kamenik Z., Komrskova K. Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics. Int. J. Mol. Sci. 2021;23:97. doi: 10.3390/ijms23010097. PubMed DOI PMC
Lustykova A., Frydrychova S., Lipensky J., Vejnar J., Rozkot M. Practical aspects of porcine semen collection for conservation and utilization of farm animal genetic resources. Res. Pig Breed. 2008;2:22–25.
Verstegen J., Iguer-Ouada M., Onclin K. Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology. 2002;57:149–179. doi: 10.1016/S0093-691X(01)00664-1. PubMed DOI
Nygaard M., Kragelund B.B., Papaleo E., Lindorff-Larsen K. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophys. J. 2017;113:550–557. doi: 10.1016/j.bpj.2017.06.042. PubMed DOI PMC
Prakash A., Kumar V., Meena N.K., Lynn A.M. Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv. 2018;8:19835–19845. doi: 10.1039/C8RA03368D. PubMed DOI PMC
Pezo F., Yeste M., Zambrano F., Uribe P., Risopatrón J., Sánchez R. Antioxidants and their effect on the oxidative/nitrosative stress of frozen-thawed boar sperm. Cryobiology. 2021;98:5–11. doi: 10.1016/j.cryobiol.2020.11.007. PubMed DOI
Wang Y., Zhou Y., Ali M.A., Zhang J., Wang W., Huang Y., Luo B., Zhang H., Qin Z., Zhang Y., et al. Comparative Analysis of piRNA Profiles Helps to Elucidate Cryoinjury between Giant Panda and Boar Sperm during Cryopreservation. Front. Vet. Sci. 2021;8:635013. doi: 10.3389/fvets.2021.635013. PubMed DOI PMC
Jofré I., Cuevas M., de Castro L.S., de Agostini Losano J.D., Torres M.A., Alvear M., Scheuermann E., Cesar Andrade A.F., Nichi M., Ortiz Assumpção M.E., et al. Antioxidant Effect of a Polyphenol-Rich Murtilla (Ugni molinae Turcz.) extract and its effect on the regulation of metabolism in refrigerated boar sperm. Oxidative Med. Cell. Longev. 2019;2019:2917513. doi: 10.1155/2019/2917513. PubMed DOI PMC
Morrel J.M. Artifical Insemination: Current and Future Trends. In: Manafi M., editor. Artifical Insemination in Farm Animals. 1st ed. InTech; Rijeka, Croatia: 2011. pp. 1–14.
Morris G.J. Rapidly cooled human sperm: No evidence of intracellular ice formation. Hum. Reprod. 2006;21:2075–2083. doi: 10.1093/humrep/del116. PubMed DOI
Leibo S.P., Bradley L. Comparative cryobiology of mammalian spermatozoa. In: Gagnon C., editor. The Male Gamete: From Basic Knowledge to Clinical Applications. 1st ed. Volume 2. Cache River Press; Viena, Austria: 1999. pp. 501–516.
Kundu C.N., Chakrabarty J., Dutta P., Bhattacharyya D., Ghosh A., Majumder G.C. Introduction Effect of dextrans on cryopreservation of goat cauda epididymal spermatozoa using a chemically defined medium. Reproduction. 2002;123:907–913. doi: 10.1530/rep.0.1230907. PubMed DOI
Deplazes E., Poger D., Cornell B., Cranfield C.G. The effect of hydronium ions on the structure of phospholipid membranes. Phys. Chem. Chem. Phys. 2018;20:357–366. doi: 10.1039/C7CP06776C. PubMed DOI
Veselský L., Pěknicová J., Čechová D., Kraus M., Geussová G., Jonáková V. Characterization of Boar Spermadhesins by Monoclonal and Polyclonal Antibodies and Their Role in Binding to Oocytes. Am. J. Reprod. Immunol. 1999;42:187–197. doi: 10.1111/j.1600-0897.1999.tb00483.x. PubMed DOI
Talevi R., Gualtieri R. Molecules involved in sperm-oviduct adhesion and release. Theriogenology. 2010;73:796–801. doi: 10.1016/j.theriogenology.2009.07.005. PubMed DOI
Gloria A., Toscani T., Robbe D., Parrillo S., de Amicis I., Contri A. Cryopreservation of turkey spermatozoa without permeant cryoprotectants. Anim. Reprod. Sci. 2019;211:106218. doi: 10.1016/j.anireprosci.2019.106218. PubMed DOI
Kimizuka N., Viriyarattanasak C., Suzuki T. Ice nucleation and supercooling behavior of polymer aqueous solutions. Cryobiology. 2008;56:80–87. doi: 10.1016/j.cryobiol.2007.10.179. PubMed DOI
Viudes-de-Castro M.P., Talaván A.G., Vicente J.S. Evaluation of dextran for rabbit sperm cryopreservation: Effect on frozen–thawed rabbit sperm quality variables and reproductive performance. Anim. Reprod. Sci. 2021;226:106714. doi: 10.1016/j.anireprosci.2021.106714. PubMed DOI
Mocé E., Grasseau I., Blesbois E. Cryoprotectant and freezing-process alter the ability of chicken sperm to acrosome react. Anim. Reprod. Sci. 2010;122:359–366. doi: 10.1016/j.anireprosci.2010.10.010. PubMed DOI
Khan I.M., Cao Z., Liu H., Khan A., Rahman S.U., Khan M.Z., Sathanawongs A., Zhang Y. Impact of Cryopreservation on Spermatozoa Freeze-Thawed Traits and Relevance OMICS to Assess Sperm Cryo-Tolerance in Farm Animals. Front. Vet. Sci. 2021;8:60918. doi: 10.3389/fvets.2021.609180. PubMed DOI PMC
Kim S., Lee Y.J., Ji D.B., Kim Y.J. Evaluation of Different Cryoprotectants (CPAs) in Boar Semen Cryopreservation. J. Vet. Med Sci. 2011;73:961–963. doi: 10.1292/jvms.10-0345. PubMed DOI
Yeste M., Rodríguez-Gil J.E., Bonet S. Artificial insemination with frozen-thawed boar sperm. Mol. Reprod. Dev. 2017;84:802–813. doi: 10.1002/mrd.22840. PubMed DOI
Caamaño J.N., Tamargo C., Parrilla I., Martínez-Pastor F., Padilla L., Salman A., Fueyo C., Fernández Á., Merino M.J., Iglesias T., et al. Post-Thaw Sperm Quality and Functionality in the Autochthonous Pig Breed Gochu Asturcelta. Animals. 2021;11:1885. doi: 10.3390/ani11071885. PubMed DOI PMC
Andrabi S.M.H., Maxwell W.M.C. A review on reproductive biotechnologies for conservation of endangered mammalian species. Anim. Reprod. Sci. 2007;99:223–243. doi: 10.1016/j.anireprosci.2006.07.002. PubMed DOI
Evans N., Yarwood R. The Politicization of Livestock: Rare Breeds and Countryside Conservation. Sociol. Rural. 2000;40:228–248. doi: 10.1111/1467-9523.00145. DOI
Marsoner T., Egarter Vigl L., Manck F., Jaritz G., Tappeiner U., Tasser E. Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space. Ecol. Indic. 2018;94:55–63. doi: 10.1016/j.ecolind.2017.06.046. DOI
Woelders H., Windig J., Hiemstra S. How Developments in Cryobiology, Reproductive Technologies and Conservation Genomics Could Shape Gene Banking Strategies for (Farm) Animals. Reprod. Domest. Anim. 2012;47:264–273. doi: 10.1111/j.1439-0531.2012.02085.x. PubMed DOI