Predictive factors for a severe course of COVID-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
ID 870177
European Reference Network for Neuromuscular Diseases
GIP-20-L-14-212
Všeobecná Fakultní Nemocnice v Praze, General University Hospital
FNBr 65269705
Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1600/2020
Masarykova Univerzita
PubMed
34080271
PubMed Central
PMC8239548
DOI
10.1111/ene.14951
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, corticosteroids, immunosuppression, myasthenia gravis, rituximab,
- MeSH
- COVID-19 * terapie MeSH
- koronavirové infekce * MeSH
- lidé MeSH
- myasthenia gravis * komplikace farmakoterapie epidemiologie MeSH
- pasivní imunizace MeSH
- SARS-CoV-2 MeSH
- senioři MeSH
- sérologická léčba covidu-19 MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND PURPOSE: Myasthenia gravis (MG) patients could be a vulnerable group in the pandemic era of coronavirus 2019 (COVID-19) mainly due to respiratory muscle weakness, older age and long-term immunosuppressive treatment. We aimed to define factors predicting the severity of COVID-19 in MG patients and risk of MG exacerbation during COVID-19. METHODS: We evaluated clinical features and outcomes after COVID-19 in 93 MG patients. RESULTS: Thirty-five patients (38%) had severe pneumonia and we recorded 10 deaths (11%) due to COVID-19. Higher forced vital capacity (FVC) values tested before COVID-19 were shown to be protective against severe infection (95% CI 0.934-0.98) as well as good control of MG measured by the quantified myasthenia gravis score (95% CI 1.047-1.232). Long-term chronic corticosteroid treatment worsened the course of COVID-19 in MG patients (95% CI 1.784-111.43) and this impact was positively associated with dosage (p = 0.005). Treatment using azathioprine (95% CI 0.448-2.935), mycophenolate mofetil (95% CI 0.91-12.515) and ciclosporin (95% CI 0.029-2.212) did not influence the course of COVID-19. MG patients treated with rituximab had a high risk of death caused by COVID-19 (95% CI 3.216-383.971). Exacerbation of MG during infection was relatively rare (15%) and was not caused by remdesivir, convalescent plasma or favipiravir (95% CI 0.885-10.87). CONCLUSIONS: As the most important predictors of severe COVID-19 in MG patients we identified unsatisfied condition of MG with lower FVC, previous long-term corticosteroid treatment especially in higher doses, older age, the presence of cancer, and recent rituximab treatment.
Department of Neurology ERN EURO NMD Center University Hospital Brno Brno Czech Republic
Department of Rehabilitation University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Iwasaki A, Yang Y. The potential danger of suboptimal antibody responses in COVID‐19. Nat Rev Immunol. 2020;20(6):339‐341. PubMed PMC
Chen T, Dai Z, Mo P, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID‐19) in Wuhan, China: a single‐centered, retrospective study. J Gerontol A Biol Sci Med Sci. 2020;75(9):1788‐1795. PubMed PMC
Guidon AC, Amato AA. COVID‐19 and neuromuscular disorders. Neurology. 2020;94(22):959‐969. PubMed
Gummi RR, Kukulka NA, Deroche CB, Govindarajan R. Factors associated with acute exacerbation of myasthenia gravis. Muscle Nerve. 2019;60(6):693‐699. PubMed
Gilhus NE, Romi F, Hong Y, Skeie GO. Myasthenia gravis and infectious disease. J Neurol. 2018;265:1251‐1258. PubMed
Beran J, Špajdel M, Katzerová V, et al. Inosine pranobex significantly decreased the case‐fatality rate among PCR positive elderly with SARS‐CoV‐2 at three nursing homes in the Czech Republic. Pathogens. 2020;9(12):1055. PubMed PMC
Cadisch R, Streit E, Hartmann K. Exacerbation of pseudoparalytic myasthenia gravis following azithromycin (Zithromax). Schweiz Med Wochenschr. 1996;126:308‐310 (in German). PubMed
Jallouli M, Saadoun D, Eymard B, et al. The association of systemic lupus erythematosus and myasthenia gravis: a series of 17 cases, with a special focus on hydroxychloroquine use and a review of the literature. J Neurol. 2012;259(7):1290‐1297. PubMed
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‐506. PubMed PMC
Lewis SR, Pritchard MW, Thomas CM, Smith AF. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2019;23:7. PubMed PMC
Brauner S, Eriksson‐Dufva A, Hietala AM, et al. Comparison between rituximab treatment for new‐onset generalized myasthenia gravis and refractory generalized myasthenia gravis. JAMA Neurol. 2020;77(8):974‐981. PubMed PMC
Safavi F, Nourbakhsh B, Azimi AR. B‐cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID‐19 epidemic in Iran. Mult Scler Relat Disord. 2020;43:102195. PubMed PMC
Yasuda H, Tsukune Y, Watanabe N, et al. Persistent COVID‐19 pneumonia and failure to develop anti‐SARS‐CoV‐2 antibodies during rituximab maintenance therapy for follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2020;20(11):774‐776. PubMed PMC
International MG/COVID‐19 Working Group , Jacob S, Muppidi S, et al. Guidance for the management of myasthenia gravis (MG) and Lambert‐Eaton myasthenic syndrome (LEMS) during the COVID‐19 pandemic. J Neurol Sci. 2020;25:116803. PubMed PMC
Herth FJF, Sakoulas G, Haddad F. Use of intravenous immunoglobulin (prevagen or octagam) for the treatment of COVID‐19: retrospective case series. Respiration. 2020;99:1145‐1153. PubMed PMC
Buszko M, Park JH, Verthelyi D, Sen R, Young HA, Rosenberg AS. The dynamic changes in cytokine responses in COVID‐19: a snapshot of the current state of knowledge. Nat Immunol. 2020;21(10):1146‐1151. PubMed
van Dam LF , Kroft LJM, van der Wal LI , et al. Clinical and computed tomography characteristics of COVID‐19 associated acute pulmonary embolism: a different phenotype of thrombotic disease? Thromb Res. 2020;193:86‐89. PubMed PMC
Amor S, Baker D, Khoury SJ, Schmierer K, Giovanonni G. SARS‐CoV‐2 and multiple sclerosis: not all immune depleting DMTs are equal or bad. Ann Neurol. 2020;87(6):794‐797. PubMed PMC
Xu X, Han M, Li T, et al. Effective treatment of severe COVID‐19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117(20):10970‐10975. PubMed PMC
Cohen‐Kaminski S, Delattre RM, Devergne O, et al. High IL‐6 gene expression and production by cultured human thymic epithelial cells from patients with myasthenia gravis. Ann NY Acad Sci. 1993;681:97‐99. PubMed
Perricone C, Triggianese P, Bartoloni E, et al. The anti‐viral facet of anti‐rheumatic drugs: lessons from COVID‐19. J Autoimmun. 2020;111:102468. PubMed PMC
Muppidi S, Guptill JT, Jacob S, et al. COVID‐19‐associated risks and effects in myasthenia gravis (CARE‐MG). Lancet Neurol. 2020;19(12):970‐971. PubMed PMC
Anand P, Slama MCC, Kaku M, et al. COVID‐19 in patients with myasthenia gravis. Muscle Nerve. 2020;62:254‐258. PubMed PMC
Camelo‐Filho AE, Silva AMS, Estephan EP, et al. Myasthenia gravis and COVID‐19: clinical characteristics and outcomes. Front Neurol. 2020;11:1053. PubMed PMC
Carfì A, Bernabei R, Landi F. Gemelli against COVID‐19 Post‐Acute Care Study Group. Persistent symptoms in patients after acute COVID‐19. JAMA. 2020;324(6):603‐605. PubMed PMC
Arnold DT, Hamilton FW, Milne A, et al. Patient outcomes after hospitalisation with COVID‐19 and implications for follow‐up: results from a prospective UK cohort. Thorax. 2020:76(4):399‐401. PubMed PMC
Korsukewitz C, Reddel WS, Bar‐Or A, Wiendl H. Neurological immunotherapy in the era of COVID‐19 — looking for consensus in the literature. Nat Rev Neurol. 2020;16(9):493–505. PubMed PMC
Alfaraj SH, Al‐Tawfiq JA, Assiri AY, Alzahrani NA, Alanazi AA, Memish ZA. Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS‐CoV) infection: a cohort study. Travel Med Infect Dis. 2019;29:48‐50. PubMed PMC
Haberman R, Axelrad J, Chen A, et al. Covid‐19 in immune‐mediated inflammatory diseases ‐ case series from New York. N Engl J Med. 2020;383(1):85‐88. PubMed PMC
World Health Organization . (2020). Clinical management of severe acute respiratory infection (SARI) when COVID‐19 disease is suspected: interim guidance. World Health Organization.
Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019‐nCoV lung injury. Lancet. 2020;395:473‐475. PubMed PMC
Youssef J, Novosad SA, Winthrop KL. Infection risk and safety of corticosteroid use. Rheum Dis Clin North Am. 2016;42:157‐176. PubMed PMC
Ramaswamy SB, Govindarajan R. COVID‐19 in refractory myasthenia gravis ‐ a case report of successful outcome. J Neuromuscul Dis. 2020;7:361‐364. PubMed PMC
Li H, Liu L, Zhang D, et al. SARS‐CoV‐2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517‐1520. PubMed PMC
von Oertzen TJ , Macerollo A, Leone MA, et al. EAN consensus statement for management of patients with neurological diseases during the COVID‐19 pandemic. Eur J Neurol. 2021;28(1):7‐14. PubMed PMC
Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID‐19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547. PubMed PMC