• This record comes from PubMed

In Silico Identification and Validation of Organic Triazole Based Ligands as Potential Inhibitory Drug Compounds of SARS-CoV-2 Main Protease

. 2021 Oct 14 ; 26 (20) : . [epub] 20211014

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
NU20-03-00309 Ministry of Health of the Czech Republic,
CZ.1.05/1.1.00/02.0109 BIOCEV
86652036 Institute of Biotechnology of t he Czech Academy of Sciences

Links

PubMed 34684780
PubMed Central PMC8541586
DOI 10.3390/molecules26206199
PII: molecules26206199
Knihovny.cz E-resources

The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.

See more in PubMed

Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444. doi: 10.1126/science.abb2762. PubMed DOI PMC

Ye Z.-W., Yuan S., Yuen K.-S., Fung S.-Y., Chan C.-P., Jin D.-Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020;16:1686–1697. doi: 10.7150/ijbs.45472. PubMed DOI PMC

Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020;10:102–108. doi: 10.1016/j.jpha.2020.03.001. PubMed DOI PMC

Kumar S., Nyodu R., Maurya V.K., Saxena S.K. Coronavirus Disease 2019 (COVID-19) Springer; Berlin, Germany: 2020. Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pp. 23–31. DOI

Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect. 2021;54:159–163. doi: 10.1016/j.jmii.2020.03.022. PubMed DOI PMC

Fehr A.R., Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H.J., Bickerton E., Britton P., editors. Coronaviruses: Methods and Protocols. Springer; New York, NY, USA: 2015. pp. 1–23. PubMed DOI PMC

Keretsu S., Bhujbal S.P., Cho S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep. 2020;10:17716. doi: 10.1038/s41598-020-74468-0. PubMed DOI PMC

Trezza A., Iovinelli D., Santucci A., Prischi F., Spiga O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Sci. Rep. 2020;10:13866. doi: 10.1038/s41598-020-70863-9. PubMed DOI PMC

Sliwoski G., Kothiwale S., Meiler J., Lowe E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014;66:334. doi: 10.1124/pr.112.007336. PubMed DOI PMC

Cava C., Bertoli G., Castiglioni I. In Silico Discovery of Candidate Drugs against COVID-19. Viruses. 2020;12:404. doi: 10.3390/v12040404. PubMed DOI PMC

Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. J. Chem. Inf. Model. 2020;60:3277–3286. doi: 10.1021/acs.jcim.0c00179. PubMed DOI PMC

Liang J., Pitsillou E., Karagiannis C., Darmawan K.K., Ng K., Hung A., Karagiannis T.C. Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: Molecular dynamic simulations highlight the stability of the ligand-protein complex. Comput. Biol. Chem. 2020;87:107292. doi: 10.1016/j.compbiolchem.2020.107292. PubMed DOI PMC

Gaudêncio S.P., Pereira F. A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition. Mar. Drugs. 2020;18:633. doi: 10.3390/md18120633. PubMed DOI PMC

Sun Y., Chen X., Liu H., Liu S., Yu H., Wang X., Qin Y., Li P. Preparation of New Sargassum fusiforme Polysaccharide Long-Chain Alkyl Group Nanomicelles and Their Antiviral Properties against ALV-J. Molecules. 2021;26:3265. doi: 10.3390/molecules26113265. PubMed DOI PMC

Zeng M., Zhang Y. Colloidal nanoparticle inks for printing functional devices: Emerging trends and future prospects. J. Mater. Chem. A. 2019;7:23301–23336. doi: 10.1039/C9TA07552F. DOI

Zeng M., Chen M., Huang D., Lei S., Zhang X., Wang L., Cheng Z. Engineered two-dimensional nanomaterials: An emerging paradigm for water purification and monitoring. Mater. Horiz. 2021;8:758–802. doi: 10.1039/D0MH01358G. PubMed DOI

Witika B.A., Makoni P.A., Matafwali S.K., Mweetwa L.L., Shandele G.C., Walker R.B. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules. 2021;26:4244. doi: 10.3390/molecules26144244. PubMed DOI PMC

Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC

Sur V.P., Mazumdar A., Kopel P., Mukherjee S., Vítek P., Michalkova H., Vaculovičová M., Moulick A. A Novel Ruthenium Based Coordination Compound Against Pathogenic Bacteria. Int. J. Mol. Sci. 2020;21:2656. doi: 10.3390/ijms21072656. PubMed DOI PMC

Murcia R.A., Leal S.M., Roa M.V., Nagles E., Muñoz-Castro A., Hurtado J.J. Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules. 2018;23:2013. doi: 10.3390/molecules23082013. PubMed DOI PMC

Sumrra S.H., Kausar S., Raza M.A., Zubair M., Zafar M.N., Nadeem M.A., Mughal E.U., Chohan Z.H., Mushtaq F., Rashid U. Metal based triazole compounds: Their synthesis, computational, antioxidant, enzyme inhibition and antimicrobial properties. J. Mol. Struct. 2018;1168:202–211. doi: 10.1016/j.molstruc.2018.05.036. DOI

Karypidou K., Ribone S.R., Quevedo M.A., Persoons L., Pannecouque C., Helsen C., Claessens F., Dehaen W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorganic Med. Chem. Lett. 2018;28:3472–3476. doi: 10.1016/j.bmcl.2018.09.019. PubMed DOI PMC

Seck I., Nguemo F. Triazole, imidazole, and thiazole-based compounds as potential agents against coronavirus. Results Chem. 2021;3:100132. doi: 10.1016/j.rechem.2021.100132. PubMed DOI PMC

Kumari A., Rajput V.S., Nagpal P., Kukrety H., Grover S., Grover A. Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin. J. Biomol. Struct. Dyn. 2020:1–13. doi: 10.1080/07391102.2020.1864476. PubMed DOI PMC

Dai W., Zhang B., Jiang X.-M., Su H., Li J., Zhao Y., Xie X., Jin Z., Peng J., Liu F., et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368:1331–1335. doi: 10.1126/science.abb4489. PubMed DOI PMC

Chandra A., Chaudhary M., Qamar I., Singh N., Nain V. In silico identification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase. J. Biomol. Struct. Dyn. 2021:1–11. doi: 10.1080/07391102.2021.1886174. PubMed DOI PMC

Saha S., Nandi R., Vishwakarma P., Prakash A., Kumar D. Discovering Potential RNA Dependent RNA Polymerase Inhibitors as Prospective Drugs Against COVID-19: An in silico Approach. Front. Pharmacol. 2021;12 doi: 10.3389/fphar.2021.634047. PubMed DOI PMC

Tamura S., Yang G.-M., Yasueda N., Matsuura Y., Komoda Y., Murakami N. Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos. Bioorganic Med. Chem. Lett. 2010;20:1598–1600. doi: 10.1016/j.bmcl.2010.01.084. PubMed DOI

Bhowmik D., Nandi R., Jagadeesan R., Kumar N., Prakash A., Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 2020;84:104451. doi: 10.1016/j.meegid.2020.104451. PubMed DOI PMC

Sinha M., Jagadeesan R., Kumar N., Saha S., Kothandan G., Kumar D. In-silico studies on Myo inositol-1-phosphate synthase of Leishmania donovani in search of anti-leishmaniasis. J. Biomol. Struct. Dyn. 2020:1–14. doi: 10.1080/07391102.2020.1847194. PubMed DOI

Ambrosioni J., Blanco J.L., Reyes-Urueña J.M., Davies M.-A., Sued O., Marcos M.A., Martínez E., Bertagnolio S., Alcamí J., Miro J.M., et al. Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV. 2021;8:e294–e305. doi: 10.1016/S2352-3018(21)00070-9. PubMed DOI PMC

Gutierrez M.D.M., Mur I., Mateo M.G., Vidal F., Domingo P. Pharmacological considerations for the treatment of COVID-19 in people living with HIV (PLWH) Expert Opin. Pharmacother. 2021:1127–1141. doi: 10.1080/14656566.2021.1887140. PubMed DOI PMC

Nygaard M., Kragelund B.B., Papaleo E., Lindorff-Larsen K. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophys. J. 2017;113:550–557. doi: 10.1016/j.bpj.2017.06.042. PubMed DOI PMC

Prakash A., Kumar V., Meena N.K., Lynn A.M. Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv. 2018;8:19835–19845. doi: 10.1039/C8RA03368D. PubMed DOI PMC

Banerjee P., Bagchi B. Dynamical control by water at a molecular level in protein dimer association and dissociation. Proc. Natl. Acad. Sci. USA. 2020;117:2302. doi: 10.1073/pnas.1908379117. PubMed DOI PMC

Teli D.M., Shah M.B., Chhabria M.T. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Front. Mol. Biosci. 2021;7 doi: 10.3389/fmolb.2020.599079. PubMed DOI PMC

Kumar N., Srivastava R., Prakash A., Lynn A.M. Structure-based virtual screening, molecular dynamics simulation and MM-PBSA toward identifying the inhibitors for two-component regulatory system protein NarL of Mycobacterium Tuberculosis. J. Biomol. Struct. Dyn. 2020;38:3396–3410. doi: 10.1080/07391102.2019.1657499. PubMed DOI

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Qureshi A., Kaur G., Kumar M. AVCpred: An integrated web server for prediction and design of antiviral compounds. Chem. Biol. Drug Des. 2017;89:74–83. doi: 10.1111/cbdd.12834. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...