In Silico Identification and Validation of Organic Triazole Based Ligands as Potential Inhibitory Drug Compounds of SARS-CoV-2 Main Protease
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU20-03-00309
Ministry of Health of the Czech Republic,
CZ.1.05/1.1.00/02.0109
BIOCEV
86652036
Institute of Biotechnology of t he Czech Academy of Sciences
PubMed
34684780
PubMed Central
PMC8541586
DOI
10.3390/molecules26206199
PII: molecules26206199
Knihovny.cz E-resources
- Keywords
- MD simulation, SARS-CoV-2, docking, drug, main protease, triazole,
- MeSH
- Antiviral Agents chemistry metabolism therapeutic use MeSH
- Benzocycloheptenes chemistry metabolism MeSH
- Databases, Chemical MeSH
- COVID-19 virology MeSH
- COVID-19 Drug Treatment MeSH
- Protease Inhibitors chemistry metabolism therapeutic use MeSH
- Coronavirus 3C Proteases antagonists & inhibitors metabolism MeSH
- Quantitative Structure-Activity Relationship MeSH
- Humans MeSH
- Ligands MeSH
- Half-Life MeSH
- SARS-CoV-2 enzymology isolation & purification MeSH
- Molecular Dynamics Simulation MeSH
- Molecular Docking Simulation MeSH
- Triazoles chemistry metabolism therapeutic use MeSH
- Protein Binding MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 3C-like proteinase, SARS-CoV-2 MeSH Browser
- Antiviral Agents MeSH
- bemcentinib MeSH Browser
- Benzocycloheptenes MeSH
- Protease Inhibitors MeSH
- Coronavirus 3C Proteases MeSH
- Ligands MeSH
- Triazoles MeSH
The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.
See more in PubMed
Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367:1444. doi: 10.1126/science.abb2762. PubMed DOI PMC
Ye Z.-W., Yuan S., Yuen K.-S., Fung S.-Y., Chan C.-P., Jin D.-Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020;16:1686–1697. doi: 10.7150/ijbs.45472. PubMed DOI PMC
Li X., Geng M., Peng Y., Meng L., Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020;10:102–108. doi: 10.1016/j.jpha.2020.03.001. PubMed DOI PMC
Kumar S., Nyodu R., Maurya V.K., Saxena S.K. Coronavirus Disease 2019 (COVID-19) Springer; Berlin, Germany: 2020. Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pp. 23–31. DOI
Mousavizadeh L., Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect. 2021;54:159–163. doi: 10.1016/j.jmii.2020.03.022. PubMed DOI PMC
Fehr A.R., Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H.J., Bickerton E., Britton P., editors. Coronaviruses: Methods and Protocols. Springer; New York, NY, USA: 2015. pp. 1–23. PubMed DOI PMC
Keretsu S., Bhujbal S.P., Cho S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep. 2020;10:17716. doi: 10.1038/s41598-020-74468-0. PubMed DOI PMC
Trezza A., Iovinelli D., Santucci A., Prischi F., Spiga O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Sci. Rep. 2020;10:13866. doi: 10.1038/s41598-020-70863-9. PubMed DOI PMC
Sliwoski G., Kothiwale S., Meiler J., Lowe E.W. Computational Methods in Drug Discovery. Pharmacol. Rev. 2014;66:334. doi: 10.1124/pr.112.007336. PubMed DOI PMC
Cava C., Bertoli G., Castiglioni I. In Silico Discovery of Candidate Drugs against COVID-19. Viruses. 2020;12:404. doi: 10.3390/v12040404. PubMed DOI PMC
Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. J. Chem. Inf. Model. 2020;60:3277–3286. doi: 10.1021/acs.jcim.0c00179. PubMed DOI PMC
Liang J., Pitsillou E., Karagiannis C., Darmawan K.K., Ng K., Hung A., Karagiannis T.C. Interaction of the prototypical α-ketoamide inhibitor with the SARS-CoV-2 main protease active site in silico: Molecular dynamic simulations highlight the stability of the ligand-protein complex. Comput. Biol. Chem. 2020;87:107292. doi: 10.1016/j.compbiolchem.2020.107292. PubMed DOI PMC
Gaudêncio S.P., Pereira F. A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition. Mar. Drugs. 2020;18:633. doi: 10.3390/md18120633. PubMed DOI PMC
Sun Y., Chen X., Liu H., Liu S., Yu H., Wang X., Qin Y., Li P. Preparation of New Sargassum fusiforme Polysaccharide Long-Chain Alkyl Group Nanomicelles and Their Antiviral Properties against ALV-J. Molecules. 2021;26:3265. doi: 10.3390/molecules26113265. PubMed DOI PMC
Zeng M., Zhang Y. Colloidal nanoparticle inks for printing functional devices: Emerging trends and future prospects. J. Mater. Chem. A. 2019;7:23301–23336. doi: 10.1039/C9TA07552F. DOI
Zeng M., Chen M., Huang D., Lei S., Zhang X., Wang L., Cheng Z. Engineered two-dimensional nanomaterials: An emerging paradigm for water purification and monitoring. Mater. Horiz. 2021;8:758–802. doi: 10.1039/D0MH01358G. PubMed DOI
Witika B.A., Makoni P.A., Matafwali S.K., Mweetwa L.L., Shandele G.C., Walker R.B. Enhancement of Biological and Pharmacological Properties of an Encapsulated Polyphenol: Curcumin. Molecules. 2021;26:4244. doi: 10.3390/molecules26144244. PubMed DOI PMC
Sánchez-López E., Gomes D., Esteruelas G., Bonilla L., Lopez-Machado A.L., Galindo R., Cano A., Espina M., Ettcheto M., Camins A., et al. Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials. 2020;10:292. doi: 10.3390/nano10020292. PubMed DOI PMC
Sur V.P., Mazumdar A., Kopel P., Mukherjee S., Vítek P., Michalkova H., Vaculovičová M., Moulick A. A Novel Ruthenium Based Coordination Compound Against Pathogenic Bacteria. Int. J. Mol. Sci. 2020;21:2656. doi: 10.3390/ijms21072656. PubMed DOI PMC
Murcia R.A., Leal S.M., Roa M.V., Nagles E., Muñoz-Castro A., Hurtado J.J. Development of Antibacterial and Antifungal Triazole Chromium(III) and Cobalt(II) Complexes: Synthesis and Biological Activity Evaluations. Molecules. 2018;23:2013. doi: 10.3390/molecules23082013. PubMed DOI PMC
Sumrra S.H., Kausar S., Raza M.A., Zubair M., Zafar M.N., Nadeem M.A., Mughal E.U., Chohan Z.H., Mushtaq F., Rashid U. Metal based triazole compounds: Their synthesis, computational, antioxidant, enzyme inhibition and antimicrobial properties. J. Mol. Struct. 2018;1168:202–211. doi: 10.1016/j.molstruc.2018.05.036. DOI
Karypidou K., Ribone S.R., Quevedo M.A., Persoons L., Pannecouque C., Helsen C., Claessens F., Dehaen W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorganic Med. Chem. Lett. 2018;28:3472–3476. doi: 10.1016/j.bmcl.2018.09.019. PubMed DOI PMC
Seck I., Nguemo F. Triazole, imidazole, and thiazole-based compounds as potential agents against coronavirus. Results Chem. 2021;3:100132. doi: 10.1016/j.rechem.2021.100132. PubMed DOI PMC
Kumari A., Rajput V.S., Nagpal P., Kukrety H., Grover S., Grover A. Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin. J. Biomol. Struct. Dyn. 2020:1–13. doi: 10.1080/07391102.2020.1864476. PubMed DOI PMC
Dai W., Zhang B., Jiang X.-M., Su H., Li J., Zhao Y., Xie X., Jin Z., Peng J., Liu F., et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368:1331–1335. doi: 10.1126/science.abb4489. PubMed DOI PMC
Chandra A., Chaudhary M., Qamar I., Singh N., Nain V. In silico identification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase. J. Biomol. Struct. Dyn. 2021:1–11. doi: 10.1080/07391102.2021.1886174. PubMed DOI PMC
Saha S., Nandi R., Vishwakarma P., Prakash A., Kumar D. Discovering Potential RNA Dependent RNA Polymerase Inhibitors as Prospective Drugs Against COVID-19: An in silico Approach. Front. Pharmacol. 2021;12 doi: 10.3389/fphar.2021.634047. PubMed DOI PMC
Tamura S., Yang G.-M., Yasueda N., Matsuura Y., Komoda Y., Murakami N. Tellimagrandin I, HCV invasion inhibitor from Rosae Rugosae Flos. Bioorganic Med. Chem. Lett. 2010;20:1598–1600. doi: 10.1016/j.bmcl.2010.01.084. PubMed DOI
Bhowmik D., Nandi R., Jagadeesan R., Kumar N., Prakash A., Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect. Genet. Evol. 2020;84:104451. doi: 10.1016/j.meegid.2020.104451. PubMed DOI PMC
Sinha M., Jagadeesan R., Kumar N., Saha S., Kothandan G., Kumar D. In-silico studies on Myo inositol-1-phosphate synthase of Leishmania donovani in search of anti-leishmaniasis. J. Biomol. Struct. Dyn. 2020:1–14. doi: 10.1080/07391102.2020.1847194. PubMed DOI
Ambrosioni J., Blanco J.L., Reyes-Urueña J.M., Davies M.-A., Sued O., Marcos M.A., Martínez E., Bertagnolio S., Alcamí J., Miro J.M., et al. Overview of SARS-CoV-2 infection in adults living with HIV. Lancet HIV. 2021;8:e294–e305. doi: 10.1016/S2352-3018(21)00070-9. PubMed DOI PMC
Gutierrez M.D.M., Mur I., Mateo M.G., Vidal F., Domingo P. Pharmacological considerations for the treatment of COVID-19 in people living with HIV (PLWH) Expert Opin. Pharmacother. 2021:1127–1141. doi: 10.1080/14656566.2021.1887140. PubMed DOI PMC
Nygaard M., Kragelund B.B., Papaleo E., Lindorff-Larsen K. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophys. J. 2017;113:550–557. doi: 10.1016/j.bpj.2017.06.042. PubMed DOI PMC
Prakash A., Kumar V., Meena N.K., Lynn A.M. Elucidation of the structural stability and dynamics of heterogeneous intermediate ensembles in unfolding pathway of the N-terminal domain of TDP-43. RSC Adv. 2018;8:19835–19845. doi: 10.1039/C8RA03368D. PubMed DOI PMC
Banerjee P., Bagchi B. Dynamical control by water at a molecular level in protein dimer association and dissociation. Proc. Natl. Acad. Sci. USA. 2020;117:2302. doi: 10.1073/pnas.1908379117. PubMed DOI PMC
Teli D.M., Shah M.B., Chhabria M.T. In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Front. Mol. Biosci. 2021;7 doi: 10.3389/fmolb.2020.599079. PubMed DOI PMC
Kumar N., Srivastava R., Prakash A., Lynn A.M. Structure-based virtual screening, molecular dynamics simulation and MM-PBSA toward identifying the inhibitors for two-component regulatory system protein NarL of Mycobacterium Tuberculosis. J. Biomol. Struct. Dyn. 2020;38:3396–3410. doi: 10.1080/07391102.2019.1657499. PubMed DOI
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Qureshi A., Kaur G., Kumar M. AVCpred: An integrated web server for prediction and design of antiviral compounds. Chem. Biol. Drug Des. 2017;89:74–83. doi: 10.1111/cbdd.12834. PubMed DOI PMC
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics