A Novel Ruthenium Based Coordination Compound Against Pathogenic Bacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CEITEC 2020 (LQ1601)
CEITEC
No. CZ.02.1.01/0.0/0.0/16_025/0007314
EFRR project "Multidisciplinary research to increase application potential of nanomaterials in agricultural practice"
PubMed
32290291
PubMed Central
PMC7178087
DOI
10.3390/ijms21072656
PII: ijms21072656
Knihovny.cz E-zdroje
- Klíčová slova
- EDS, SEM, antimicrobial compound, benzimidazole, coordination compound, ruthenium,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- buněčné linie MeSH
- komplexní sloučeniny chemie farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- myši MeSH
- Ramanova spektroskopie MeSH
- ruthenium chemie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- komplexní sloučeniny MeSH
- ruthenium MeSH
The current epidemic of antibiotic-resistant infections urges to develop alternatives to less-effective antibiotics. To assess anti-bacterial potential, a novel coordinate compound (RU-S4) was synthesized using ruthenium-Schiff base-benzimidazole ligand, where ruthenium chloride was used as the central atom. RU-S4 was characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy. Antibacterial effect of RU-S4 was studied against Staphylococcus aureus (NCTC 8511), vancomycin-resistant Staphylococcus aureus (VRSA) (CCM 1767), methicillin-resistant Staphylococcus aureus (MRSA) (ST239: SCCmecIIIA), and hospital isolate Staphylococcus epidermidis. The antibacterial activity of RU-S4 was checked by growth curve analysis and the outcome was supported by optical microscopy imaging and fluorescence LIVE/DEAD cell imaging. In vivo (balb/c mice) infection model prepared with VRSA (CCM 1767) and treated with RU-S4. In our experimental conditions, all infected mice were cured. The interaction of coordination compound with bacterial cells were further confirmed by cryo-scanning electron microscope (Cryo-SEM). RU-S4 was completely non-toxic against mammalian cells and in mice and subsequently treated with synthesized RU-S4.
Central European Institute of Technology Brno University of Technology CZ 61200 Brno Czech Republic
Global Change Research Institute of the Czech Academy of Sciences CZ 603 00 Brno Czech Republic
Zobrazit více v PubMed
Boucher H., Miller L.G., Razonable R.R. Serious Infections Caused by Methicillin-Resistant Staphylococcus aureus. Clin. Infect. Dis. 2010;51(Suppl. S2):S183–S197. doi: 10.1086/653519. PubMed DOI
Loomba P., Taneja J., Mishra B. Methicillin and vancomycin resistant S. aureus in hospitalized patients. J. Glob. Infect. Dis. 2010;2:275–283. doi: 10.4103/0974-777X.68535. PubMed DOI PMC
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18:318–327. doi: 10.1016/S1473-3099(17)30753-3. PubMed DOI
Foster T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017;41:430–449. doi: 10.1093/femsre/fux007. PubMed DOI
Boneca I.G., Chiosis G. Vancomycin resistance: Occurrence, mechanisms and strategies to combat it. Expert Opin. Ther. Targets. 2003;7:311–328. doi: 10.1517/14728222.7.3.311. PubMed DOI
Kugelberg E., Norström T., Petersen T.K., Duvold T., Andersson D.I., Hughes D. Establishment of a Superficial Skin Infection Model in Mice by Using Staphylococcus aureus and Streptococcus pyogenes. Antimicrob. Agents Chemother. 2005;49:3435. doi: 10.1128/AAC.49.8.3435-3441.2005. PubMed DOI PMC
Kopel P., Wawrzak D., Langer V., Cihalova K., Chudobova D., Vesely R., Adam V., Kizek R. Biological Activity and Molecular Structures of Bis(benzimidazole) and Trithiocyanurate Complexes. Molecules. 2015;20:10360–10376. doi: 10.3390/molecules200610360. PubMed DOI PMC
Mazumdar A., Haddad Y., Milosavljevic V., Michalkova H., Guran R., Bhowmick S., Moulick A. Peptide-Carbon Quantum Dots conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria. Nanomaterials. 2020;10:325. doi: 10.3390/nano10020325. PubMed DOI PMC
Jayabalakrishnan C., Natarajan K. Ruthenium(II) carbonyl complexes with tridentate Schiff bases and their antibacterial activity. Transit. Met. Chem. 2002;27:75–79. doi: 10.1023/A:1013437203247. DOI
Li F., Collins J.G., Keene F.R. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev. 2015;44:2529–2542. doi: 10.1039/C4CS00343H. PubMed DOI
Mårtensson A.K.F., Bergentall M., Tremaroli V., Lincoln P. Diastereomeric bactericidal effect of Ru(phenanthroline)(2) dipyridophenazine. Chirality. 2016;28:713–720. doi: 10.1002/chir.22656. PubMed DOI PMC
Selwin Joseyphus R., Sivasankaran Nair M. Synthesis, characterization and antimicrobial activity of transition metal complexes with the Schiff base derived from imidazole-2-carboxaldehyde and glycylglycine. J. Coord. Chem. 2009;62:319–327. doi: 10.1080/00958970802236048. DOI
Ranjith P.K., Rajeesh P., Haridas K.R., Susanta N.K., Guru Row T.N., Rishikesan R., Suchetha Kumari N. Design and synthesis of positional isomers of 5 and 6-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles as possible antimicrobial and antitubercular agents. Bioorg. Med. Chem. Lett. 2013;23:5228–5234. doi: 10.1016/j.bmcl.2013.06.072. PubMed DOI
Gullapelli K., Brahmeshwari G., Ravichander M., Kusuma U. Synthesis, antibacterial and molecular docking studies of new benzimidazole derivatives. Egypt. J. Basic Appl. Sci. 2017;4:303–309. doi: 10.1016/j.ejbas.2017.09.002. DOI
Hameed P.S., Raichurkar A., Madhavapeddi P., Menasinakai S., Sharma S., Kaur P., Nandishaiah R., Panduga V., Reddy J., Sambandamurthy V.K., et al. Benzimidazoles: Novel Mycobacterial Gyrase Inhibitors from Scaffold Morphing. ACS Med. Chem. Lett. 2014;5:820–825. doi: 10.1021/ml5001728. PubMed DOI PMC
Suwaiyan A., Zwarich R., Baig N. Infrared and Raman spectra of benzimidazole. J. Raman Spectrosc. 1990;21:243–249. doi: 10.1002/jrs.1250210406. DOI
Wang G., Harrison A., Li X., Whittaker G., Shi J., Wang X., Yang H., Cao P., Zhang Z. Study of the adsorption of benzimidazole and 2-mercaptobenzothiazole on an iron surface by confocal micro-Raman spectroscopy. J. Raman Spectrosc. 2004;35:1016–1022. doi: 10.1002/jrs.1235. DOI
Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004;275:177–182. doi: 10.1016/j.jcis.2004.02.012. PubMed DOI
Van Sorge N.M., Beasley F.C., Gusarov I., Gonzalez D.J., Blickwede M.V.K., Anik S., Borkowski A.W., Dorrestein P.C., Nudler E., Nizet V. Methicillin-resistant Staphylococcus aureus bacterial nitric-oxide Synthase affects antibiotic sensitivity and skin abscess development. J. Biol. Chem. 2013;288:6417–6426. doi: 10.1074/jbc.M112.448738. PubMed DOI PMC
Li R.C., Nix D.E., Schentag J.J. New turbidimetric assay for quantitation of viable bacterial densities. Antimicrob. Agents Chemother. 1993;37:371–374. doi: 10.1128/AAC.37.2.371. PubMed DOI PMC
Sur V.P., Mazumdar A., Kopel P., Moulick A. Novel Ruthenium coordinate compound combined with Schiff base and benzimidazole as a potent antibacterial agent against VRSA and MRSA. MendelNet. 2019;26:654–658.
Stasiak-Różańska L., Błażejak S., Gientka I. Effect of glycerol and dihydroxyacetone concentrations in the culture medium on the growth of acetic acid bacteria Gluconobacter oxydans ATCC 621. Eur. Food Res. Technol. 2014;239:453–461. doi: 10.1007/s00217-014-2238-4. DOI
Hogenkamp A., Herías M.V., Tooten P.C.J., Veldhuizen E.J.A., Haagsman H.P. Effects of surfactant protein D on growth, adhesion and epithelial invasion of intestinal Gram-negative bacteria. Mol. Immunol. 2007;44:3517–3527. doi: 10.1016/j.molimm.2007.03.013. PubMed DOI
Greenwood D., Bidgood K., Turner M. A comparison of the responses of staphylococci and streptococci to teicoplanin and vancomycin. J. Antimicrob. Chemother. 1987;20:155–164. doi: 10.1093/jac/20.2.155. PubMed DOI
Jelinkova P., Splichal Z., Jimenez A.M.J., Haddad Y., Mazumdar A., Sur V.P., Milosavljevic V., Kopel P., Buchtelova H., Guran R., et al. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect. Drug Resist. 2018;11:1807–1817. doi: 10.2147/IDR.S160975. PubMed DOI PMC
Heger Z., Merlos Rodrigo M.A., Michalek P., Polanska H., Masarik M., Vit V., Plevova M., Pacik D., Eckschlager T., Stiborova M., et al. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer. PLoS ONE. 2016;11:e0165830. doi: 10.1371/journal.pone.0165830. PubMed DOI PMC
Sur V.P., Kominkova M., Buchtova Z., Dolezelikova K., Zitka O., Moulick A. CdSe QD Biosynthesis in Yeast Using Tryptone-Enriched Media and Their Conjugation with a Peptide Hecate for Bacterial Detection and Killing. Nanomaterials. 2019;9:1463. doi: 10.3390/nano9101463. PubMed DOI PMC
Wu Y., Liang J., Rensing K., Chou T.-M., Libera M. Extracellular Matrix Reorganization during Cryo Preparation for Scanning Electron Microscope Imaging of Staphylococcus aureus Biofilms. Microsc. Microanal. 2014;20:1348–1355. doi: 10.1017/S143192761401277X. PubMed DOI
Goszczynska A., Kwiecien H., Fijalkowski K. Synthesis and antibacterial activity of Schiff bases and amines derived from alkyl 2-(2-formyl-4-nitrophenoxy) alkanoates. Med. Chem. Res. 2015;24:3561–3577. doi: 10.1007/s00044-015-1397-6. PubMed DOI PMC
Thangadurai T.D., Ihm S.-K. Novel bidentate ruthenium(III) Schiff base complexes: Synthetic, spectral, electrochemical, catalytic and antimicrobial studies. Transit. Met. Chem. 2004;29:189–195. doi: 10.1023/B:TMCH.0000019419.40754.63. DOI
Li X., Gorle A.K., Ainsworth T.D., Heimann K., Woodward C.E., Grant Collins J., Richard Keene F. RNA and DNA binding of inert oligonuclear ruthenium(ii) complexes in live eukaryotic cells. Dalton Trans. 2015;44:3594–3603. doi: 10.1039/C4DT02575J. PubMed DOI
Shoemaker M., Cohen I., Campbell M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J. Ethnopharmacol. 2004;93:381–384. doi: 10.1016/j.jep.2004.04.011. PubMed DOI
Kumar S.V., Scottwell S.Ø., Waugh E., McAdam C.J., Hanton L.R., Brooks H.J.L., Crowley J.D. Antimicrobial Properties of Tris(homoleptic) Ruthenium(II) 2-Pyridyl-1,2,3-triazole “Click” Complexes against Pathogenic Bacteria, Including Methicillin-Resistant Staphylococcus aureus (MRSA) Inorg. Chem. 2016;55:9767–9777. doi: 10.1021/acs.inorgchem.6b01574. PubMed DOI
Mulyana Y., Weber D.K., Buck D.P., Motti C.A., Collins J.G., Keene F.R. Oligonuclear polypyridylruthenium(ii) complexes incorporating flexible polar and non-polar bridges: Synthesis, DNA-binding and cytotoxicity. Dalton Trans. 2011;40:1510–1523. doi: 10.1039/c0dt01250e. PubMed DOI
Bolhuis A., Hand L., Marshall J.E., Richards A.D., Rodger A., Aldrich-Wright J. Antimicrobial activity of ruthenium-based intercalators. Eur. J. Pharm. Sci. 2011;42:313–317. doi: 10.1016/j.ejps.2010.12.004. PubMed DOI
Hegerova D., Vesely R., Cihalova K., Kopel P., Milosavljevic V., Heger Z., Hynek D., Guran R., Vaculovicova M., Sedlacek P., et al. Antimicrobial Agent Based on Selenium Nanoparticles and Carboxymethyl Cellulose for the Treatment of Bacterial Infections. J. Biomed. Nanotechnol. 2017;13:767–777. doi: 10.1166/jbn.2017.2384. DOI
Manicone A.M., McGuire J.K. Matrix metalloproteinases as modulators of inflammation. Semin. Cell Dev. Biol. 2008;19:34–41. doi: 10.1016/j.semcdb.2007.07.003. PubMed DOI PMC
Caley M.P., Martins V.L.C., O’Toole E.A. Metalloproteinases and Wound Healing. Adv. Wound Care. 2015;4:225–234. doi: 10.1089/wound.2014.0581. PubMed DOI PMC
Küster T., Hermann C., Hemphill A., Gottstein B., Spiliotis M. Subcutaneous Infection Model Facilitates Treatment Assessment of Secondary Alveolar Echinococcosis in Mice. PLoS Negl. Trop. Dis. 2013;7:e2235. doi: 10.1371/journal.pntd.0002235. PubMed DOI PMC
Chen H.Y., Zhang M., Li B.W., Chen D., Dong X.Y., Wang Y.H., Gu Y.Q. Versatile antimicrobial peptide-based ZnO quantum dots for in vivo bacteria diagnosis and treatment with high specificity. Biomaterials. 2015;53:532–544. doi: 10.1016/j.biomaterials.2015.02.105. PubMed DOI
Joseyphus R.S., Nair M.S. Antibacterial and Antifungal Studies on Some Schiff Base Complexes of Zinc(II) Mycobiology. 2008;36:93–98. doi: 10.4489/MYCO.2008.36.2.093. PubMed DOI PMC
Jayaseelan P., Prasad S., Vedanayaki S., Rajavel R. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes. Arab. J. Chem. 2016;9:S668–S677. doi: 10.1016/j.arabjc.2011.07.029. DOI
Yang Y., Liao G., Fu C. Recent Advances on Octahedral Polypyridyl Ruthenium(II) Complexes as Antimicrobial Agents. Polymers. 2018;10:650. doi: 10.3390/polym10060650. PubMed DOI PMC
Clarke M.J., Zhu F., Frasca D.R. Non-Platinum Chemotherapeutic Metallopharmaceuticals. Chem. Rev. 1999;99:2511–2534. doi: 10.1021/cr9804238. PubMed DOI
Weder J.E., Dillon C.T., Hambley T.W., Kennedy B.J., Lay P.A., Biffin J.R., Regtop H.L., Davies N.M. Copper complexes of non-steroidal anti-inflammatory drugs: An opportunity yet to be realized. Coord. Chem. Rev. 2002;232:95–126. doi: 10.1016/S0010-8545(02)00086-3. DOI
Bistrović A., Krstulović L., Stolić I., Drenjančević D., Talapko J., Taylor M.C., Kelly J.M., Bajić M., Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J. Enzym. Inhib. Med. Chem. 2018;33:1323–1334. doi: 10.1080/14756366.2018.1484733. PubMed DOI PMC
Spunda R., Hruby J., Mericka P., Mlcek M., Pecha O., Splith K., Schmelzle M., Krenzien F., Lindner J., Matia I., et al. Immunosuppressive protocols with tacrolimus after cryopreserved aortal allotransplantation in rats. PLoS ONE. 2018;13:e0201984. doi: 10.1371/journal.pone.0201984. PubMed DOI PMC
Gargiulo S., Greco A., Gramanzini M., Esposito S., Affuso A., Brunetti A., Vesce G. Mice Anesthesia, Analgesia, and Care, Part I: Anesthetic Considerations in Preclinical Research. ILAR J. 2012;53:E55–E69. doi: 10.1093/ilar.53.1.55. PubMed DOI
Malachowa N., Kobayashi S.D., Braughton K.R., DeLeo F.R. Mouse Model of Staphylococcus aureus Skin Infection. In: Allen I.C., editor. Mouse Models of Innate Immunity: Methods and Protocols. Humana Press; Totowa, NJ, USA: 2013. pp. 109–116. PubMed
Pletzer D., Mansour S.C., Wuerth K., Rahanjam N., Hancock R.E.W. New Mouse Model for Chronic Infections by Gram-Negative Bacteria Enabling the Study of Anti-Infective Efficacy and Host-Microbe Interactions. MBio. 2017;8:e00140-17. doi: 10.1128/mBio.00140-17. PubMed DOI PMC
Hussain S., Joo J., Kang J., Kim B., Braun G.B., She Z.-G., Kim D., Mann A.P., Mölder T., Teesalu T., et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2018;2:95–103. doi: 10.1038/s41551-017-0187-5. PubMed DOI PMC
Mölne L., Tarkowski A. An Experimental Model of Cutaneous Infection Induced by Superantigen-Producing Staphylococcus aureus. J. Investig. Dermatol. 2000;114:1120–1125. doi: 10.1046/j.1523-1747.2000.00973.x. PubMed DOI
Sykes E.A., Dai Q., Tsoi K.M., Hwang D.M., Chan W.C.W. Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nat. Commun. 2014;5:3796. doi: 10.1038/ncomms4796. PubMed DOI PMC
Koch M.A. Chapter 18—Experimental Modeling and Research Methodology. In: Suckow M.A., Weisbroth S.H., Franklin C.L., editors. The Laboratory Rat. 2nd ed. Academic Press; Burlington, NJ, USA: 2006. pp. 587–625.
Sevgi M., Toklu A., Vecchio D., Hamblin M.R. Topical antimicrobials for burn infections—An update. Recent Pat. Anti-Infect. Drug Discov. 2013;8:161–197. doi: 10.2174/1574891X08666131112143447. PubMed DOI PMC
O’Toole M.G., Henderson R.M., Soucy P.A., Fasciotto B.H., Hoblitzell P.J., Keynton R.S., Ehringer W.D., Gobin A.S. Curcumin Encapsulation in Submicrometer Spray-Dried Chitosan/Tween 20 Particles. Biomacromolecules. 2012;13:2309–2314. doi: 10.1021/bm300564v. PubMed DOI
Blazkova I., Viet Nguyen H., Kominkova M., Konecna R., Chudobova D., Krejcova L., Kopel P., Hynek D., Zitka O., Beklova M., et al. Fullerene as a transporter for doxorubicin investigated by analytical methods and in vivo imaging. Electrophoresis. 2013;35:1040–1049. doi: 10.1002/elps.201300393. PubMed DOI
Merritt J., Senpuku H., Kreth J. Let there be bioluminescence: Development of a biophotonic imaging platform for in situ analyses of oral biofilms in animal models. Environ. Microbiol. 2015;18:174–190. doi: 10.1111/1462-2920.12953. PubMed DOI PMC
Moulick A., Blazkova I., Milosavljevic V., Fohlerova Z., Hubalek J., Kopel P., Vaculovicova M., Adam V., Kizek R. Application of CdTe/ZnSe Quantum Dots in In Vitro Imaging of Chicken Tissue and Embryo. Photochem. Photobiol. 2014;91:417–423. doi: 10.1111/php.12398. PubMed DOI
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics