Peptide-Carbon Quantum Dots conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria

. 2020 Feb 14 ; 10 (2) : . [epub] 20200214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32075033

Grantová podpora
LQ1601 Central European Institute of Technology
CZ.02.1.01/0.0/0.0/16_025/0007314 EFRR project"Multidisciplinary research to increase application potential of nanomaterials in agricultural practice"

Antibiotic-resistant bacterial infections have become global issues for public health, which increases the utter need to develop alternatives to antibiotics. Here, the HSER (Homo sapiens retinoic acid receptor) peptide was designed from retinoic acid receptor responder protein 2 of Homo sapiens, and was conjugated with synthesized CQDs (carbon quantum dots) for enhanced antibacterial activity in combination, as individually they are not highly effective. The HSER-CQDs were characterized using spectrophotometer, HPLC coupled with electrospray-ionization quadrupole time-of-flight mass spectrometer (ESI-qTOF) mass spectrometer, zeta potential, zeta size, and FTIR. Thereafter, the antibacterial activity against Vancomycin-Resistant Staphylococcus aureus (VRSA) and Escherichia coli (carbapenem resistant) was studied using growth curve analysis, further supported by microscopic images showing the presence of cell debris and dead bacterial cells. The antibacterial mechanism of HSER-CQDs was observed to be via cell wall disruption and also interaction with gDNA (genomic DNA). Finally, toxicity test against normal human epithelial cells showed no toxicity, confirmed by microscopic analysis. Thus, the HSER-CQDs conjugate, having high stability and low toxicity with prominent antibacterial activity, can be used as a potential antibacterial agent.

Zobrazit více v PubMed

Frieri M., Kumar K., Boutin A. Antibiotic resistance. J. Infect. Public Health. 2017;10:369–378. doi: 10.1016/j.jiph.2016.08.007. PubMed DOI

McNeece G., Naughton V., Woodward M.J., Dooley J.S.G., Naughton P.J. Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland. Int. J. Food Microbiol. 2014;179:24–32. doi: 10.1016/j.ijfoodmicro.2014.03.019. PubMed DOI

Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. MMBR. 2010;74:417–433. doi: 10.1128/MMBR.00016-10. PubMed DOI PMC

Juknius T., Tamulevičius T., Gražulevičiūtė I., Klimienė I., Matusevičius A.P., Tamulevičius S. In-situ measurements of bacteria resistance to antimicrobial agents employing leaky mode sub-wavelength diffraction grating. Sens. Actuators B Chem. 2014;204:799–806. doi: 10.1016/j.snb.2014.08.049. DOI

Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18:318–327. doi: 10.1016/S1473-3099(17)30753-3. PubMed DOI

Alexander E.L., Gardete S., Bar H.Y., Wells M.T., Tomasz A., Rhee K.Y. Intermediate-Type Vancomycin Resistance (VISA) in Genetically-Distinct Staphylococcus aureus Isolates Is Linked to Specific, Reversible Metabolic Alterations. PLoS ONE. 2014;9:e97137. doi: 10.1371/journal.pone.0097137. PubMed DOI PMC

Doi Y., Paterson D.L. Carbapenemase-producing Enterobacteriaceae. Semin. Respir. Crit. Care Med. 2015;36:74–84. PubMed PMC

World Health Organization . Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter Baumannii and Pseudomonas Aeruginosa in Health Care Facilities. World Health Organization; Geneva, Switzerland: 2017. PubMed

Phe K., Lee Y., McDaneld P.M., Prasad N., Yin T., Figueroa D.A., Musick W.L., Cottreau J.M., Hu M., Tam V.H. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrob. Agents Chemother. 2014;58:2740–2746. doi: 10.1128/AAC.02476-13. PubMed DOI PMC

Amladi A.U., Abirami B., Devi S.M., Sudarsanam T.D., Kandasamy S., Kekre N., Veeraraghavan B., Sahni R.D. Susceptibility profile, resistance mechanisms & efficacy ratios of fosfomycin, nitrofurantoin & colistin for carbapenem-resistant Enterobacteriaceae causing urinary tract infections. Indian J. Med Res. 2019;149:185–191. PubMed PMC

Rincón S., Panesso D., Díaz L., Carvajal L.P., Reyes J., Munita J.M., Arias C.A. Resistencia a antibióticos de última línea en cocos Gram positivos: La era posterior a la vancomicina. Biomed. Rev. Inst. Nac. Salud. 2014;34(Suppl. 1):191–208. doi: 10.7705/biomedica.v34i0.2210. PubMed DOI PMC

Zhu W.L., Lan H., Park I.-S., Kim J.I., Jin H.Z., Hahm K.-S., Shin S.Y. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 2006;349:769–774. doi: 10.1016/j.bbrc.2006.08.094. PubMed DOI

Groh T., Hrabeta J., Khalil M.A., Doktorova H., Eckschlager T., Stiborova M. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int. J. Oncol. 2015;47:343–352. doi: 10.3892/ijo.2015.2996. PubMed DOI

Wang S., Wang Q., Zeng X., Ye Q., Huang S., Yu H., Yang T., Qiao S. Use of the Antimicrobial Peptide Sublancin with Combined Antibacterial and Immunomodulatory Activities To Protect against Methicillin-Resistant Staphylococcus aureus Infection in Mice. J. Agric. Food Chem. 2017;65:8595–8605. doi: 10.1021/acs.jafc.7b02592. PubMed DOI

Wang S., Zeng X., Yang Q., Qiao S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016;17:603. doi: 10.3390/ijms17050603. PubMed DOI PMC

Brunetti J., Falciani C., Roscia G., Pollini S., Bindi S., Scali S., Arrieta U.C., Gómez-Vallejo V., Quercini L., Ibba E., et al. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci. Rep. 2016;6:26077. doi: 10.1038/srep26077. PubMed DOI PMC

Jelinkova P., Mazumdar A., Sur V.P., Kociova S., Dolezelikova K., Jimenez A.M.J., Koudelkova Z., Mishra P.K., Smerkova K., Heger Z., et al. Nanoparticle-drug conjugates treating bacterial infections. J. Control. Release. 2019;307:166–185. doi: 10.1016/j.jconrel.2019.06.013. PubMed DOI

Moradlou O., Rabiei Z., Delavari N.J.J.o.P., Chemistry P.A. Antibacterial effects of carbon quantum dots@ hematite nanostructures deposited on titanium against Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. A Chem. 2019;379:144–149. doi: 10.1016/j.jphotochem.2019.04.047. DOI

Kováčová M., Špitalská E., Markovic Z., Špitálský Z. Carbon Quantum Dots As Antibacterial Photosensitizers and Their Polymer Nanocomposite Applications. Part. Part. Syst. Charact. 2020;37:1900348. doi: 10.1002/ppsc.201900348. DOI

Dong X., Liang W., Meziani M.J., Sun Y.-P., Yang L.J.T. Carbon Dots as Potent Antimicrobial Agents. Theranostics. 2020;10:671. doi: 10.7150/thno.39863. PubMed DOI PMC

Lin F., Bao Y.W., Wu F.G. Carbon dots for sensing and killing microorganisms. C J. Carbon Res. 2019;5:33. doi: 10.3390/c5020033. DOI

Zabel B.A., Kwitniewski M., Banas M., Zabieglo K., Murzyn K., Cichy J. Chemerin regulation and role in host defense. Am. J. Clin. Exp. Immunol. 2014;3:1–19. PubMed PMC

Milosavljevic V., Nguyen H.V., Michalek P., Moulick A., Kopel P., Kizek R., Adam V. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem. Pap. 2015;69:192–201. doi: 10.2478/s11696-014-0590-2. DOI

Wang F., Pang S., Wang L., Li Q., Kreiter M., Liu C.-y. One-SteSynthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chem. Mater. 2010;22:4528–4530. doi: 10.1021/cm101350u. DOI

Moulick A., Heger Z., Milosavljevic V., Richtera L., Barroso-Flores J., Merlos Rodrigo M.A., Buchtelova H., Podgajny R., Hynek D., Kopel P., et al. Real-Time Visualization of Cell Membrane Damage Using Gadolinium–Schiff Base Complex-Doped Quantum Dots. ACS Appl. Mater. Interfaces. 2018;10:35859–35868. doi: 10.1021/acsami.8b15868. PubMed DOI

Jelinkova P., Splichal Z., Jimenez A.M.J., Haddad Y., Mazumdar A., Sur V.P., Milosavljevic V., Kopel P., Buchtelova H., Guran R., et al. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect. Drug Resist. 2018;11:1807–1817. doi: 10.2147/IDR.S160975. PubMed DOI PMC

Jelinkova P., Vesely R., Cihalova K., Hegerova D., Ananbeh H.A.A.A., Richtera L., Smerkova K., Brtnicky M., Kynicky J., Moulick A., et al. Effect of arsenic (III and V) on oxidative stress parameters in resistant and susceptible Staphylococcus aureus. Environ. Res. 2018;166:394–401. doi: 10.1016/j.envres.2018.06.024. PubMed DOI

Heger Z., Merlos Rodrigo M.A., Michalek P., Polanska H., Masarik M., Vit V., Plevova M., Pacik D., Eckschlager T., Stiborova M., et al. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer. PLoS ONE. 2016;11:e0165830. doi: 10.1371/journal.pone.0165830. PubMed DOI PMC

Agbor T.A., Demma Z., Mrsny R.J., Castillo A., Boll E.J., McCormick B.A.J.C.m. The oxido–reductase enzyme glutathione peroxidase 4 (GPX4) governs S almonella T yphimurium–induced neutrophil transepithelial migration. Cell. Microbiol. 2014;16:1339–1353. doi: 10.1111/cmi.12290. PubMed DOI PMC

Li Y., Lv M., Su C., Long S., Zhang W., Conway K.L., Li W., Xavier R.J., Shi H.N.J.F.i.i. p40phox-Deficient Mice Exhibit Impaired Bacterial Clearance and Enhanced Pro-inflammatory Responses during Salmonella enterica serovar Typhimurium Infection. Front. Immunol. 2017;8:1270. doi: 10.3389/fimmu.2017.01270. PubMed DOI PMC

Tavares A.F.N., Teixeira M., Romão C.C., Seixas J.D., Nobre L.S., Saraiva L.M. Reactive Oxygen Species Mediate Bactericidal Killing Elicited by Carbon Monoxide-releasing Molecules. J. Biol. Chem. 2011;286:26708–26717. doi: 10.1074/jbc.M111.255752. PubMed DOI PMC

Antosiewicz M.J., Shugar D. UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: Selected applications. Biophys. Rev. 2016;8:163–177. doi: 10.1007/s12551-016-0197-7. PubMed DOI PMC

Emam A.N., Loutfy S.A., Mostafa A.A., Awad H., Mohamed M.B. Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv. 2017;7:23502–23514. doi: 10.1039/C7RA01423F. DOI

Xu M., He G., Li Z., He F., Gao F., Su Y., Zhang L., Yang Z., Zhang Y. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale. 2014;6:10307–10315. doi: 10.1039/C4NR02792B. PubMed DOI

Wang Z., Lu Y., Yuan H., Ren Z., Xu C., Chen J. Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale. 2015;7:20743–20748. doi: 10.1039/C5NR05804J. PubMed DOI

Gao X., Lu Y., Zhang R., He S., Ju J., Liu M., Li L., Chen W. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C. 2015;3:2302–2309. doi: 10.1039/C4TC02582B. DOI

Pan K., Chen H., Baek S.J., Zhong Q. Self-assembled curcumin-soluble soybean polysaccharide nanoparticles, physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chem. 2018;246:82–89. doi: 10.1016/j.foodchem.2017.11.002. PubMed DOI PMC

Coates J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. Appl. Theory Instrum. 2006 doi: 10.1002/9780470027318.a5606. DOI

Jackson M., Mantsch H.H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 1995;30:95–120. doi: 10.3109/10409239509085140. PubMed DOI

Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta (BBA)-Bioenerg. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI

Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000;74:141–173. doi: 10.1016/S0079-6107(00)00021-3. PubMed DOI

Stiefel P., Schmidt-Emrich S., Maniura-Weber K., Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015;15:36. doi: 10.1186/s12866-015-0376-x. PubMed DOI PMC

Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today. 2012;17:850–860. doi: 10.1016/j.drudis.2012.03.002. PubMed DOI

Bechara C., Sagan S. Cell–penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–1702. doi: 10.1016/j.febslet.2013.04.031. PubMed DOI

Copolovici D.M., Langel K., Eriste E., Langel U. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano. 2014;8:1972–1994. doi: 10.1021/nn4057269. PubMed DOI

Zhang Q., Gao H., He Q. Taming cell penetrating peptides: Never too old to teach old dogs new tricks. Mol. Pharm. 2015;12:3105–3118. doi: 10.1021/acs.molpharmaceut.5b00428. PubMed DOI

Soares J.W., Kirby R., Doherty L.A., Meehan A., Arcidiacono S. Immobilization and orientation–dependent activity of a naturally occurring antimicrobial peptide. J. Pept. Sci. 2015;21:669–679. doi: 10.1002/psc.2787. PubMed DOI

Dorosz J., Gofman Y., Kolusheva S., Otzen D., Ben-Tal N., Nielsen N.C., Jelinek R. Membrane interactions of novicidin, a novel antimicrobial peptide, phosphatidylglycerol promotes bilayer insertion. J. Phys. Chem. B. 2010;114:11053–11060. doi: 10.1021/jp1052248. PubMed DOI

Balakrishnan S.V., Vad B.S., Otzen D.E. Novicidin’s membrane permeabilizing activity is driven by membrane partitioning but not by helicity: A biophysical study of the impact of lipid charge and cholesterol. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013;1834:996–1002. doi: 10.1016/j.bbapap.2013.03.025. PubMed DOI

Kim S.R., Park M.J., Lee M.K., Sung S.H., Park E.J., Kim J., Kim S.Y., Oh T.H., Markelonis G.J., Kim Y.C. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med. 2002;32:596–604. doi: 10.1016/S0891-5849(02)00751-7. PubMed DOI

Shoemaker M., Cohen I., Campbell M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J. Ethnopharmacol. 2004;93:381–384. doi: 10.1016/j.jep.2004.04.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...