Peptide-Carbon Quantum Dots conjugate, Derived from Human Retinoic Acid Receptor Responder Protein 2, against Antibiotic-Resistant Gram Positive and Gram Negative Pathogenic Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1601
Central European Institute of Technology
CZ.02.1.01/0.0/0.0/16_025/0007314
EFRR project"Multidisciplinary research to increase application potential of nanomaterials in agricultural practice"
PubMed
32075033
PubMed Central
PMC7075150
DOI
10.3390/nano10020325
PII: nano10020325
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, antibiotic-resistant, bacterial infections, carbon quantum dots, toxicity,
- Publikační typ
- časopisecké články MeSH
Antibiotic-resistant bacterial infections have become global issues for public health, which increases the utter need to develop alternatives to antibiotics. Here, the HSER (Homo sapiens retinoic acid receptor) peptide was designed from retinoic acid receptor responder protein 2 of Homo sapiens, and was conjugated with synthesized CQDs (carbon quantum dots) for enhanced antibacterial activity in combination, as individually they are not highly effective. The HSER-CQDs were characterized using spectrophotometer, HPLC coupled with electrospray-ionization quadrupole time-of-flight mass spectrometer (ESI-qTOF) mass spectrometer, zeta potential, zeta size, and FTIR. Thereafter, the antibacterial activity against Vancomycin-Resistant Staphylococcus aureus (VRSA) and Escherichia coli (carbapenem resistant) was studied using growth curve analysis, further supported by microscopic images showing the presence of cell debris and dead bacterial cells. The antibacterial mechanism of HSER-CQDs was observed to be via cell wall disruption and also interaction with gDNA (genomic DNA). Finally, toxicity test against normal human epithelial cells showed no toxicity, confirmed by microscopic analysis. Thus, the HSER-CQDs conjugate, having high stability and low toxicity with prominent antibacterial activity, can be used as a potential antibacterial agent.
Zobrazit více v PubMed
Frieri M., Kumar K., Boutin A. Antibiotic resistance. J. Infect. Public Health. 2017;10:369–378. doi: 10.1016/j.jiph.2016.08.007. PubMed DOI
McNeece G., Naughton V., Woodward M.J., Dooley J.S.G., Naughton P.J. Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland. Int. J. Food Microbiol. 2014;179:24–32. doi: 10.1016/j.ijfoodmicro.2014.03.019. PubMed DOI
Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. MMBR. 2010;74:417–433. doi: 10.1128/MMBR.00016-10. PubMed DOI PMC
Juknius T., Tamulevičius T., Gražulevičiūtė I., Klimienė I., Matusevičius A.P., Tamulevičius S. In-situ measurements of bacteria resistance to antimicrobial agents employing leaky mode sub-wavelength diffraction grating. Sens. Actuators B Chem. 2014;204:799–806. doi: 10.1016/j.snb.2014.08.049. DOI
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18:318–327. doi: 10.1016/S1473-3099(17)30753-3. PubMed DOI
Alexander E.L., Gardete S., Bar H.Y., Wells M.T., Tomasz A., Rhee K.Y. Intermediate-Type Vancomycin Resistance (VISA) in Genetically-Distinct Staphylococcus aureus Isolates Is Linked to Specific, Reversible Metabolic Alterations. PLoS ONE. 2014;9:e97137. doi: 10.1371/journal.pone.0097137. PubMed DOI PMC
Doi Y., Paterson D.L. Carbapenemase-producing Enterobacteriaceae. Semin. Respir. Crit. Care Med. 2015;36:74–84. PubMed PMC
World Health Organization . Guidelines for the Prevention and Control of Carbapenem-Resistant Enterobacteriaceae, Acinetobacter Baumannii and Pseudomonas Aeruginosa in Health Care Facilities. World Health Organization; Geneva, Switzerland: 2017. PubMed
Phe K., Lee Y., McDaneld P.M., Prasad N., Yin T., Figueroa D.A., Musick W.L., Cottreau J.M., Hu M., Tam V.H. In vitro assessment and multicenter cohort study of comparative nephrotoxicity rates associated with colistimethate versus polymyxin B therapy. Antimicrob. Agents Chemother. 2014;58:2740–2746. doi: 10.1128/AAC.02476-13. PubMed DOI PMC
Amladi A.U., Abirami B., Devi S.M., Sudarsanam T.D., Kandasamy S., Kekre N., Veeraraghavan B., Sahni R.D. Susceptibility profile, resistance mechanisms & efficacy ratios of fosfomycin, nitrofurantoin & colistin for carbapenem-resistant Enterobacteriaceae causing urinary tract infections. Indian J. Med Res. 2019;149:185–191. PubMed PMC
Rincón S., Panesso D., Díaz L., Carvajal L.P., Reyes J., Munita J.M., Arias C.A. Resistencia a antibióticos de última línea en cocos Gram positivos: La era posterior a la vancomicina. Biomed. Rev. Inst. Nac. Salud. 2014;34(Suppl. 1):191–208. doi: 10.7705/biomedica.v34i0.2210. PubMed DOI PMC
Zhu W.L., Lan H., Park I.-S., Kim J.I., Jin H.Z., Hahm K.-S., Shin S.Y. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 2006;349:769–774. doi: 10.1016/j.bbrc.2006.08.094. PubMed DOI
Groh T., Hrabeta J., Khalil M.A., Doktorova H., Eckschlager T., Stiborova M. The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int. J. Oncol. 2015;47:343–352. doi: 10.3892/ijo.2015.2996. PubMed DOI
Wang S., Wang Q., Zeng X., Ye Q., Huang S., Yu H., Yang T., Qiao S. Use of the Antimicrobial Peptide Sublancin with Combined Antibacterial and Immunomodulatory Activities To Protect against Methicillin-Resistant Staphylococcus aureus Infection in Mice. J. Agric. Food Chem. 2017;65:8595–8605. doi: 10.1021/acs.jafc.7b02592. PubMed DOI
Wang S., Zeng X., Yang Q., Qiao S. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Int. J. Mol. Sci. 2016;17:603. doi: 10.3390/ijms17050603. PubMed DOI PMC
Brunetti J., Falciani C., Roscia G., Pollini S., Bindi S., Scali S., Arrieta U.C., Gómez-Vallejo V., Quercini L., Ibba E., et al. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci. Rep. 2016;6:26077. doi: 10.1038/srep26077. PubMed DOI PMC
Jelinkova P., Mazumdar A., Sur V.P., Kociova S., Dolezelikova K., Jimenez A.M.J., Koudelkova Z., Mishra P.K., Smerkova K., Heger Z., et al. Nanoparticle-drug conjugates treating bacterial infections. J. Control. Release. 2019;307:166–185. doi: 10.1016/j.jconrel.2019.06.013. PubMed DOI
Moradlou O., Rabiei Z., Delavari N.J.J.o.P., Chemistry P.A. Antibacterial effects of carbon quantum dots@ hematite nanostructures deposited on titanium against Gram-positive and Gram-negative bacteria. J. Photochem. Photobiol. A Chem. 2019;379:144–149. doi: 10.1016/j.jphotochem.2019.04.047. DOI
Kováčová M., Špitalská E., Markovic Z., Špitálský Z. Carbon Quantum Dots As Antibacterial Photosensitizers and Their Polymer Nanocomposite Applications. Part. Part. Syst. Charact. 2020;37:1900348. doi: 10.1002/ppsc.201900348. DOI
Dong X., Liang W., Meziani M.J., Sun Y.-P., Yang L.J.T. Carbon Dots as Potent Antimicrobial Agents. Theranostics. 2020;10:671. doi: 10.7150/thno.39863. PubMed DOI PMC
Lin F., Bao Y.W., Wu F.G. Carbon dots for sensing and killing microorganisms. C J. Carbon Res. 2019;5:33. doi: 10.3390/c5020033. DOI
Zabel B.A., Kwitniewski M., Banas M., Zabieglo K., Murzyn K., Cichy J. Chemerin regulation and role in host defense. Am. J. Clin. Exp. Immunol. 2014;3:1–19. PubMed PMC
Milosavljevic V., Nguyen H.V., Michalek P., Moulick A., Kopel P., Kizek R., Adam V. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem. Pap. 2015;69:192–201. doi: 10.2478/s11696-014-0590-2. DOI
Wang F., Pang S., Wang L., Li Q., Kreiter M., Liu C.-y. One-SteSynthesis of Highly Luminescent Carbon Dots in Noncoordinating Solvents. Chem. Mater. 2010;22:4528–4530. doi: 10.1021/cm101350u. DOI
Moulick A., Heger Z., Milosavljevic V., Richtera L., Barroso-Flores J., Merlos Rodrigo M.A., Buchtelova H., Podgajny R., Hynek D., Kopel P., et al. Real-Time Visualization of Cell Membrane Damage Using Gadolinium–Schiff Base Complex-Doped Quantum Dots. ACS Appl. Mater. Interfaces. 2018;10:35859–35868. doi: 10.1021/acsami.8b15868. PubMed DOI
Jelinkova P., Splichal Z., Jimenez A.M.J., Haddad Y., Mazumdar A., Sur V.P., Milosavljevic V., Kopel P., Buchtelova H., Guran R., et al. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect. Drug Resist. 2018;11:1807–1817. doi: 10.2147/IDR.S160975. PubMed DOI PMC
Jelinkova P., Vesely R., Cihalova K., Hegerova D., Ananbeh H.A.A.A., Richtera L., Smerkova K., Brtnicky M., Kynicky J., Moulick A., et al. Effect of arsenic (III and V) on oxidative stress parameters in resistant and susceptible Staphylococcus aureus. Environ. Res. 2018;166:394–401. doi: 10.1016/j.envres.2018.06.024. PubMed DOI
Heger Z., Merlos Rodrigo M.A., Michalek P., Polanska H., Masarik M., Vit V., Plevova M., Pacik D., Eckschlager T., Stiborova M., et al. Sarcosine Up-Regulates Expression of Genes Involved in Cell Cycle Progression of Metastatic Models of Prostate Cancer. PLoS ONE. 2016;11:e0165830. doi: 10.1371/journal.pone.0165830. PubMed DOI PMC
Agbor T.A., Demma Z., Mrsny R.J., Castillo A., Boll E.J., McCormick B.A.J.C.m. The oxido–reductase enzyme glutathione peroxidase 4 (GPX4) governs S almonella T yphimurium–induced neutrophil transepithelial migration. Cell. Microbiol. 2014;16:1339–1353. doi: 10.1111/cmi.12290. PubMed DOI PMC
Li Y., Lv M., Su C., Long S., Zhang W., Conway K.L., Li W., Xavier R.J., Shi H.N.J.F.i.i. p40phox-Deficient Mice Exhibit Impaired Bacterial Clearance and Enhanced Pro-inflammatory Responses during Salmonella enterica serovar Typhimurium Infection. Front. Immunol. 2017;8:1270. doi: 10.3389/fimmu.2017.01270. PubMed DOI PMC
Tavares A.F.N., Teixeira M., Romão C.C., Seixas J.D., Nobre L.S., Saraiva L.M. Reactive Oxygen Species Mediate Bactericidal Killing Elicited by Carbon Monoxide-releasing Molecules. J. Biol. Chem. 2011;286:26708–26717. doi: 10.1074/jbc.M111.255752. PubMed DOI PMC
Antosiewicz M.J., Shugar D. UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: Selected applications. Biophys. Rev. 2016;8:163–177. doi: 10.1007/s12551-016-0197-7. PubMed DOI PMC
Emam A.N., Loutfy S.A., Mostafa A.A., Awad H., Mohamed M.B. Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv. 2017;7:23502–23514. doi: 10.1039/C7RA01423F. DOI
Xu M., He G., Li Z., He F., Gao F., Su Y., Zhang L., Yang Z., Zhang Y. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale. 2014;6:10307–10315. doi: 10.1039/C4NR02792B. PubMed DOI
Wang Z., Lu Y., Yuan H., Ren Z., Xu C., Chen J. Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection. Nanoscale. 2015;7:20743–20748. doi: 10.1039/C5NR05804J. PubMed DOI
Gao X., Lu Y., Zhang R., He S., Ju J., Liu M., Li L., Chen W. One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C. 2015;3:2302–2309. doi: 10.1039/C4TC02582B. DOI
Pan K., Chen H., Baek S.J., Zhong Q. Self-assembled curcumin-soluble soybean polysaccharide nanoparticles, physicochemical properties and in vitro anti-proliferation activity against cancer cells. Food Chem. 2018;246:82–89. doi: 10.1016/j.foodchem.2017.11.002. PubMed DOI PMC
Coates J. Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. Appl. Theory Instrum. 2006 doi: 10.1002/9780470027318.a5606. DOI
Jackson M., Mantsch H.H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit. Rev. Biochem. Mol. Biol. 1995;30:95–120. doi: 10.3109/10409239509085140. PubMed DOI
Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta (BBA)-Bioenerg. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI
Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000;74:141–173. doi: 10.1016/S0079-6107(00)00021-3. PubMed DOI
Stiefel P., Schmidt-Emrich S., Maniura-Weber K., Ren Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 2015;15:36. doi: 10.1186/s12866-015-0376-x. PubMed DOI PMC
Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today. 2012;17:850–860. doi: 10.1016/j.drudis.2012.03.002. PubMed DOI
Bechara C., Sagan S. Cell–penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–1702. doi: 10.1016/j.febslet.2013.04.031. PubMed DOI
Copolovici D.M., Langel K., Eriste E., Langel U. Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano. 2014;8:1972–1994. doi: 10.1021/nn4057269. PubMed DOI
Zhang Q., Gao H., He Q. Taming cell penetrating peptides: Never too old to teach old dogs new tricks. Mol. Pharm. 2015;12:3105–3118. doi: 10.1021/acs.molpharmaceut.5b00428. PubMed DOI
Soares J.W., Kirby R., Doherty L.A., Meehan A., Arcidiacono S. Immobilization and orientation–dependent activity of a naturally occurring antimicrobial peptide. J. Pept. Sci. 2015;21:669–679. doi: 10.1002/psc.2787. PubMed DOI
Dorosz J., Gofman Y., Kolusheva S., Otzen D., Ben-Tal N., Nielsen N.C., Jelinek R. Membrane interactions of novicidin, a novel antimicrobial peptide, phosphatidylglycerol promotes bilayer insertion. J. Phys. Chem. B. 2010;114:11053–11060. doi: 10.1021/jp1052248. PubMed DOI
Balakrishnan S.V., Vad B.S., Otzen D.E. Novicidin’s membrane permeabilizing activity is driven by membrane partitioning but not by helicity: A biophysical study of the impact of lipid charge and cholesterol. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2013;1834:996–1002. doi: 10.1016/j.bbapap.2013.03.025. PubMed DOI
Kim S.R., Park M.J., Lee M.K., Sung S.H., Park E.J., Kim J., Kim S.Y., Oh T.H., Markelonis G.J., Kim Y.C. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med. 2002;32:596–604. doi: 10.1016/S0891-5849(02)00751-7. PubMed DOI
Shoemaker M., Cohen I., Campbell M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J. Ethnopharmacol. 2004;93:381–384. doi: 10.1016/j.jep.2004.04.011. PubMed DOI
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics
A Novel Ruthenium Based Coordination Compound Against Pathogenic Bacteria