Characterization and in vitro Analysis of Probiotic-Derived Peptides Against Multi Drug Resistance Bacterial Infections
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
32983007
PubMed Central
PMC7477325
DOI
10.3389/fmicb.2020.01963
Knihovny.cz E-resources
- Keywords
- antibacterial peptides, antibiotics, bacteria, infections, multidrug resistance,
- Publication type
- Journal Article MeSH
An inexorable switch from antibiotics has become a major desideratum to overcome antibiotic resistance. Bacteriocin from Lactobacillus casei, a cardinal probiotic was used to design novel antibacterial peptides named as Probiotic Bacteriocin Derived and Modified (PBDM) peptides (PBDM1: YKWFAHLIKGLC and PBDM2: YKWFRHLIKKLC). The loop-shaped 3D structure of peptides was characterized in silico via molecular dynamics simulation as well as biophysically via spectroscopic methods. Thereafter, in vitro results against multidrug resistant bacterial strains and hospital samples demonstrated the strong antimicrobial activity of PBDM peptides. Further, in vivo studies with PBDM peptides showed downright recovery of balb/c mice from Vancomycin Resistant Staphylococcus aureus (VRSA) infection to its healthy condition. Thereafter, in vitro study with human epithelial cells showed no significant cytotoxic effects with high biocompatibility and good hemocompatibility. In conclusion, PBDM peptides displayed significant antibacterial activity against certain drug resistant bacteria which cause infections in human beings. Future analysis are required to unveil its mechanism of action in order to execute it as an alternative to antibiotics.
See more in PubMed
Adochitei A., Drochioiu G. (2011). Rapid characterization of peptide secondary structure By Ft-Ir spectroscopy. Revue Roumaine De Chimie 56 783–791.
Alexander E. L., Gardete S., Bar H. Y., Wells M. T., Tomasz A., Rhee K. Y. (2014). Intermediate-type vancomycin resistance (VISA) in genetically-distinct Staphylococcus aureus isolates is linked to specific, reversible metabolic alterations. PLoS One 9:e97137. 10.1371/journal.pone.0097137 PubMed DOI PMC
Bhowmick S., Mazumdar A., Moulick A., Adam V. (2020). Algal metabolites: An inevitable substitute for antibiotics. Biotechnol. Adv. 43:107571. 10.1016/j.biotechadv.2020.107571 PubMed DOI
Boulos L., Prévost M., Barbeau B., Coallier J., Desjardins R. (1999). LIVE/DEAD® BacLight™ : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37 77–86. 10.1016/S0167-7012(99)00048-42 PubMed DOI
Brunetti J., Falciani C., Roscia G., Pollini S., Bindi S., Scali S., et al. (2016). In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci. Rep. 6:26077. 10.1038/srep26077 PubMed DOI PMC
Chan D. I., Prenner E. J., Vogel H. J. (2006). Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim. Biophys. Acta Biomembr. 1758 1184–1202. 10.1016/j.bbamem.2006.04.006 PubMed DOI
Coates J. (2006). “Interpretation of infrared spectra, a practical approach,” in Encyclopedia of Analytical Chemistry, eds Meyers R. A., McKelvy M. L. 10.1002/9780470027318.a5606 DOI
Cui L., Iwamoto A., Lian J.-Q., Neoh H.-M., Maruyama T., Horikawa Y., et al. (2006). Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 50 428–438. 10.1128/aac.50.2.428-438.2006 PubMed DOI PMC
Davies J., Davies D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74 417–433. 10.1128/mmbr.00016-10 PubMed DOI PMC
Fernández-Pérez R., Sáenz Y., Rojo-Bezares B., Zarazaga M., Rodríguez J. M., Torres C., et al. (2018). Production and antimicrobial activity of nisin under enological conditions. Fron. Microbiol. 9:1918. 10.3389/fmicb.2018.01918 PubMed DOI PMC
Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74 2461–2470. 10.1128/aem.02272-2277 PubMed DOI PMC
Gargiulo S., Greco A., Gramanzini M., Esposito S., Affuso A., Brunetti A., et al. (2012). Mice anesthesia, analgesia, and care, Part I: anesthetic considerations in preclinical research. ILAR J. 53 E55–E69. PubMed
Groh T., Hrabeta J., Khalil M. A., Doktorova H., Eckschlager T., Stiborova M. (2015). The synergistic effects of DNA-damaging drugs cisplatin and etoposide with a histone deacetylase inhibitor valproate in high-risk neuroblastoma cells. Int. J. Oncol. 47 343–352. 10.3892/ijo.2015.2996 PubMed DOI
Haque M. A., Imamura R., Brown G. A., Krishnamurthi V. R., Niyonshuti I. I., Marcelle T., et al. (2017). An experiment-based model quantifying antimicrobial activity of silver nanoparticles on Escherichia coli. RSC Adv. 7 56173–56182. 10.1039/C7RA10495B DOI
Haug B. E., Camilio K. A., Eliassen L. T., Stensen W., Svendsen J. S., Berg K., et al. (2016). Discovery of a 9-mer cationic peptide (LTX-315) as a potential first in class oncolytic peptide. J. Med. Chem. 59 2918–2927. 10.1021/acs.jmedchem.5b02025 PubMed DOI
Heger Z., Merlos Rodrigo M. A., Michalek P., Polanska H., Masarik M., Vit V., et al. (2016). Sarcosine Up-regulates expression of genes involved in cell cycle progression of metastatic models of prostate cancer. PLoS One 11:e0165830. 10.1371/journal.pone.0165830 PubMed DOI PMC
Hegerova D., Vesely R., Cihalova K., Kopel P., Milosavljevic V., Heger Z., et al. (2017). Antimicrobial agent based on selenium nanoparticles and carboxymethyl cellulose for the treatment of bacterial infections. J. Biomed. Nanotechnol. 13 767–777. 10.1166/jbn.2017.2384 DOI
Hussain S., Joo J., Kang J., Kim B., Braun G. B., She Z. -G., et al. (2018). Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng. 2 95–103. 10.1038/s41551-017-0187-185 PubMed DOI PMC
Jelinkova P., Splichal Z., Jimenez A. M. J., Haddad Y., Mazumdar A., Sur V. P., et al. (2018a). Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect. Drug Resist. 11 1807–1817. 10.2147/idr.s160975 PubMed DOI PMC
Jelinkova P., Vesely R., Cihalova K., Hegerova D., Ananbeh H. A. A., Richtera L., et al. (2018b). Effect of arsenic (III and V) on oxidative stress parameters in resistant and susceptible Staphylococcus aureus. Environ. Res. 166 394–401. 10.1016/j.envres.2018.06.024 PubMed DOI
Jozala A. F., de Lencastre Novaes L. C., Junior A. P. (2015). Concepts, Compounds and the Alternatives of Antibacterials. London: IntechOpen
Keller R., Winde G., Terpe H. J., Foerster E. C., Domschke W. (2002). Fluorescence endoscopy using a fluorescein-labeled monoclonal antibody against carcinoembryonic antigen in patients with colorectal carcinoma and adenoma. Endoscopy 34 801–807. 10.1055/s-2002-34254 PubMed DOI
Koch M. A. (2006). “Chapter 18 experimental modeling and research methodology,” in The Laboratory Rat, eds Suckow M. A., Weisbroth S. H., Franklin C. L. (Burlington, NJ: Academic Press; ) 587–625 10.1016/b978-012074903-4/50021-2 DOI
Lorenzón E. N., Cespedes G. F., Vicente E. F., Nogueira L. G., Bauab T. M., Castro M. S., et al. (2012). Effects of dimerization on the structure and biological activity of antimicrobial peptide Ctx-Ha. Antimicrob. Agents Chemother. 56 3004–3010. 10.1128/aac.06262-6211 PubMed DOI PMC
Malachowa N., Kobayashi S.D., Braughton K.R., DeLeo F.R. (2013). “Mouse model of staphylococcus aureus skin infection,” in Mouse Models of Innate Immunity: Methods and Protocols, ed. Allen I.C. (Totowa, NJ: Humana Press; ), 109–116 10.1007/978-1-62703-481-4_14 PubMed DOI
Mazumdar A., Haddad Y., Milosavljevic V., Michalkova H., Guran R., Bhowmick S., et al. (2020). Peptide-carbon quantum dots conjugate, derived from human retinoic acid receptor responder protein 2, against antibiotic-resistant gram positive and gram negative pathogenic bacteria. 10:325. 10.3390/nano10020325 PubMed DOI PMC
McGuinness W. A., Malachowa N., DeLeo F. R. (2017). Vancomycin resistance in Staphylococcus aureus. Yale J. Biol. Med. 90 269–281 PubMed PMC
McNeece G., Naughton V., Woodward M. J., Dooley J. S. G., Naughton P. J. (2014). Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland. Int. J. Food Microbiol. 179 24–32. 10.1016/j.ijfoodmicro.2014.03.019 PubMed DOI
Milosavljevic V., Haddad Y., Merlos Rodrigo M. A., Moulick A., Polanska H., Hynek D., et al. (2016). The zinc-schiff base-novicidin complex as a potential prostate cancer therapy. PLoS One 11:e0163983. 10.1371/journal.pone.0163983 PubMed DOI PMC
Mohammedsaeed W., McBain A. J., Cruickshank S. M., O’Neill C. A. (2014). Lactobacillus rhamnosus GG inhibits the toxic effects of Staphylococcus aureus on epidermal keratinocytes. Appl. Environ. Microbiol. 80 5773–5781. 10.1128/AEM.00861-814 PubMed DOI PMC
Moulick A., Heger Z., Milosavljevic V., Richtera L., Barroso-Flores J., Merlos Rodrigo M. A., et al. (2018). Real-time visualization of cell membrane damage using gadolinium–schiff base complex-doped quantum dots. ACS Appl. Mater. Interfac. 10 35859–35868. 10.1021/acsami.8b15868 PubMed DOI
O’Toole M. G., Henderson R. M., Soucy P. A., Fasciotto B. H., Hoblitzell P. J., Keynton R. S., et al. (2012). Curcumin Encapsulation in submicrometer spray-dried Chitosan/Tween 20 particles. Biomacromolecules 13 2309–2314. 10.1021/bm300564v PubMed DOI
Rincón S., Panesso D., Díaz L., Carvajal L. P., Reyes J., Munita J. M., et al. (2014). Resistencia a antibióticos de última línea en cocos gram positivos: la era posterior a la vancomicina. Biomedica 34 191–208. 10.1590/s0120-41572014000500022 PubMed DOI PMC
Sanches P. R. S., Carneiro B. M., Batista M. N., Braga A. C. S., Lorenzón E. N., Rahal P., et al. (2015). A conjugate of the lytic peptide Hecate and gallic acid: structure, activity against cervical cancer, and toxicity. Amino Acids 47 1433–1443. 10.1007/s00726-015-1980-1987 PubMed DOI
Sevgi M., Toklu A., Vecchio D., Hamblin M. R. (2013). Topical antimicrobials for burn infections - an update. Recent Patents Antiinfect. Drug Discov. 8 161–197. 10.2174/1574891x08666131112143447 PubMed DOI PMC
Shin J. M., Gwak J. W., Kamarajan P., Fenno J. C., Rickard A. H., Kapila Y. L. (2016). Biomedical applications of nisin. J. Appl. Microbiol. 120 1449–1465. 10.1111/jam.13033 PubMed DOI PMC
Spunda R., Hruby J., Mericka P., Mlcek M., Pecha O., Splith K., et al. (2018). Immunosuppressive protocols with tacrolimus after cryopreserved aortal allotransplantation in rats. PLoS One 13:e0201984. 10.1371/journal.pone.0201984 PubMed DOI PMC
Stiefel P., Schmidt-Emrich S., Maniura-Weber K., Ren Q. (2015). Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 15:36. 10.1186/s12866-015-0376-x PubMed DOI PMC
Sur V. P., Kominkova M., Buchtova Z., Dolezelikova K., Zitka O., Moulick A. (2019). CdSe QD biosynthesis in yeast using tryptone-enriched media and their conjugation with a peptide hecate for bacterial detection and killing. Nanomaterials 9:1463. 10.3390/nano9101463 PubMed DOI PMC
Sur V. P., Mazumdar A., Ashrafi A., Mukherjee A., Milosavljevic V., Michalkova H., et al. (2020a). A novel biocompatible titanium–gadolinium quantum dot as a bacterial detecting agent with high antibacterial activity. Nanomaterials 10:778 10.3390/nano10040778 PubMed DOI PMC
Sur V. P., Mazumdar A., Kopel P., Mukherjee S., Vítek P., Michalkova H., et al. (2020b). A novel ruthenium based coordination compound against pathogenic bacteria. Int. J. Mol. Sci. 21:2656 10.3390/ijms21072656 PubMed DOI PMC
Sykes E. A., Dai Q., Tsoi K. M., Hwang D. M., Chan W. C. W. (2014). Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nat. Commun. 5 3796–3796. 10.1038/ncomms4796 PubMed DOI PMC
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D. L., et al. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18 318–327. 10.1016/S1473-3099(17)30753-30753 PubMed DOI
Tan R., Liu J., Li M., Huang J., Sun J., Qu H. (2014). Epidemiology and antimicrobial resistance among commonly encountered bacteria associated with infections and colonization in intensive care units in a university-affiliated hospital in Shanghai. J. Microbiol. Immunol. Infect. 47 87–94. 10.1016/j.jmii.2012.11.006 PubMed DOI
Thomer L., Schneewind O., Missiakas D. (2016). Pathogenesis of Staphylococcus aureus bloodstream infections. Annu. Rev. Pathol. 11 343–364. 10.1146/annurev-pathol-012615-044351 PubMed DOI PMC
Tsai T.-L., Li A.-C., Chen Y.-C., Liao Y. -S., Lin T.-H. (2015). Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumor Biol. 36 3775–3789. 10.1007/s13277-014-3018-3012 PubMed DOI
Ventola C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T 40 277–283. PubMed PMC
Vicente E. F., Basso L. G. M., Cespedes G. F., Lorenzón E. N., Castro M. S., Mendes-Giannini M. J. S., et al. (2013). Dynamics and conformational studies of TOAC spin labeled analogues of Ctx(Ile21)-Ha peptide from hypsiboas albopunctatus. PLoS One 8:e60818. 10.1371/journal.pone.0060818 PubMed DOI PMC
Vukomanović M., Žuniè V., Kunej Š., Janèar B., Jeverica S., Suvorov D. J. S. R. (2017). Nano-engineering the antimicrobial spectrum of lantibiotics: activity of nisin against gram negative bacteria. Sci. Rep. 7: 4324. PubMed PMC
Wang S., Wang Q., Zeng X., Ye Q., Huang S., Yu H., et al. (2017). Use of the antimicrobial peptide sublancin with combined antibacterial and immunomodulatory activities to protect against methicillin-resistant staphylococcus aureus infection in mice. J. Agric. Food Chem. 65 8595–8605. 10.1021/acs.jafc.7b02592 PubMed DOI
Welberg L. A., Kinkead B., Thrivikraman K., Huerkamp M. J., Nemeroff C. B., Plotsky P. M. (2006). Ketamine–xylazine–acepromazine anesthesia and postoperative recovery in rats. J. Am. Assoc. Lab. Anim. Sci. 45 13–20 PubMed
Wu Y., Liang J., Rensing K., Chou T., Libera M. (2014). Extracellular Matrix Reorganization during Cryo Preparation for Scanning Electron Microscope Imaging of Staphylococcus aureus Biofilms. Cambridge: Cambridge University Press. PubMed
Zhou Y., Kong Y., Kundu S., Cirillo J. D., Liang H. (2012). Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnol. 10:19. 10.1186/1477-3155-10-19 PubMed DOI PMC
Zhu W. L., Lan H., Park I. -S., Kim J. I., Jin H. Z., Hahm K.-S., et al. (2006). Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1. Biochem. Biophys. Res. Commun. 349 769–774. 10.1016/j.bbrc.2006.08.094 PubMed DOI
Specific Inhibition of VanZ-Mediated Resistance to Lipoglycopeptide Antibiotics