The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy

. 2016 ; 11 (10) : e0163983. [epub] 20161011

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27727290

Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug.

Erratum v

PubMed

Erratum v

PubMed

Zobrazit více v PubMed

Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global Cancer Statistics. CA-Cancer J Clin 61: 69–90. 10.3322/caac.20107 PubMed DOI

de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, et al. (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376: 1147–1154. 10.1016/S0140-6736(10)61389-X PubMed DOI

Biancardi MF, Santos FCA, Madi-Ravazzi L, Goes RM, Vilamaior PSL, et al. (2010) Testosterone Promotes an Anabolic Increase in the Rat Female Prostate (Skene's Paraurethral Gland) Which Acquires a Male Ventral Prostate Phenotype. Anat Rec 293: 2163–2175. doi: 10.1002/ar.21250. Epub 2010 Sep 9 PubMed DOI

Lodemann U, Einspanier R, Scharfen F, Martens H, Bondzio A (2013) Effects of zinc on epithelial barrier properties and viability in a human and a porcine intestinal cell culture model. Toxicol Vitro 27: 834–843. doi: 10.1016/j.tiv.2012.12.019. Epub 2012 Dec 27 PubMed DOI

Costello LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35: 285–296. 10.1002/(sici)1097-0045(19980601)35:4<285::aid-pros8>3.0.co;2-f PubMed DOI

Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71: 3281–3295. 10.1007/s00018-014-1617-0 PubMed DOI PMC

Krizkova S, Kepinska M, Emri G, Rodrigo MAM, Tmejova K, et al. (2016) Microarray analysis of metallothioneins in human diseases-A review. J Pharm Biomed Anal 117: 464–473. 10.1016/j.jpba.2015.09.031 PubMed DOI

Hasumi M, Suzuki K, Matsui H, Koike H, Ito K, et al. (2003) Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett 200: 187–195. 10.1016/s0304-3835(03)00441-5 PubMed DOI

Franklin RB, Feng P, Milon B, Desouki MM, Singh KK, et al. (2005) hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 4: 1–10. 10.1186/1476-4598-4-32 PubMed DOI PMC

Costello LC, Franklin RB, Zou J, Feng P, Bok R, et al. (2011) Human prostate cancer ZIP1/zinc/citrate genetic/metabolic relationship in the TRAMP prostate cancer animal model. Cancer Biol Ther 12: 1078–1084. 10.4161/cbt.12.12.18367 PubMed DOI PMC

Johnson LN, Cashman SM, Kumar-Singh R (2008) Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther 16: 107–114. 10.1038/sj.mt.6300324 PubMed DOI PMC

Gaspar D, Veiga AS, Castanho MRB (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4: 1–24. 10.3389/fmicb.2013.00294 PubMed DOI PMC

Regberg J, Srimanee A, Langel U (2012) Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals 5: 991–1007. 10.3390/ph5090991 PubMed DOI PMC

Dorosz J, Gofman Y, Kolusheva S, Otzen D, Ben-Tal N, et al. (2010) Membrane Interactions of Novicidin, a Novel Antimicrobial Peptide: Phosphatidylglycerol Promotes Bilayer Insertion. J Phys Chem B 114: 11053–11060. 10.1021/jp1052248 PubMed DOI

Osowole AA, Kolawole GA, Fagade OE (2008) Synthesis, characterization and biological studies on unsymmetrical Schiff-base complexes of nickel(II), copper(II) and zinc(II) and adducts with 2,2 '-dipyridine and 1,10-phenanthroline. J Coord Chem 61: 1046–1055. 10.1080/00958970701482446 DOI

Kostova I, Saso L (2013) Advances in Research of Schiff-Base Metal Complexes as Potent Antioxidants. Curr Med Chem 20: 4609–4632. 10.2174/09298673113209990149 PubMed DOI

Allam A, Maigre L, Alimi M, de Sousa RA, Hessani A, et al. (2014) New Peptides with Metal Binding Abilities and Their Use as Drug Carriers. Bioconjugate Chem 25: 1811–1819. 10.1021/bc500317u PubMed DOI

Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61: 953–964. 10.1016/j.addr.2009.06.001 PubMed DOI

Cermakova S, Herchel R, Travnicek Z, Sebela M (2010) Syntheses and magnetic properties of trinuclear trithiocyanurato-bridged manganese(II) complexes involving bidentate aromatic N-donor heterocycles. Inorg Chem Commun 13: 778–781. 10.1016/j.inoche.2010.03.045 DOI

Kopel P, Wawrzak D, Langer V, Cihalova K, Chudobova D, et al. (2015) Biological Activity and Molecular Structures of Bis(benzimidazole) and Trithiocyanurate Complexes. Molecules 20: 10360–10376. 10.3390/molecules200610360 PubMed DOI PMC

Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta-Bioenerg 1767: 1073–1101. 10.1016/j.bbabio.2007.06.004 PubMed DOI

Kopel P, Sindelar Z, Klicka R (1998) Complexes of iron(III) salen and saloph Schiff bases with bridging dicarboxylic and tricarboxylic acids. Transit Met Chem 23: 139–142.

Maxim C, Pasatoiu TD, Kravtsov VC, Shova S, Muryn CA, et al. (2008) Copper(II) and zinc(II) complexes with Schiff-base ligands derived from salicylaldehyde and 3-methoxysalicylaldehyde: Synthesis, crystal structures, magnetic and luminescence properties. Inorg Chim Acta 361: 3903–3911. 10.1016/j.ica.2008.03.013 DOI

Shit S, Chakraborty J, Samanta B, Rosair GM, Mitra S (2009) Synthesis, Structure and Fluorescence Properties of a Trinuclear Zn(II) Complex with N,N,O-donor Schiff Base Ligands and Bridging Acetates. Z Naturforsch (B) 64: 403–408. 10.1515/znb-2009-0408 DOI

Voicescu M, Heinrich M, Hellwig P (2009) Steady-State and Time Resolved Fluorescence Analysis on Tyrosine-Histidine Model Compounds. J Fluoresc 19: 257–266. 10.1007/s10895-008-0411-5 PubMed DOI

Guzow K, Ganzynkowicz R, Rzeska A, Mrozek J, Szabelski M, et al. (2004) Photophysical properties of tyrosine and its simple derivatives studied by time-resolved fluorescence spectroscopy, global analysis, and theoretical calculations. J Phys Chem B 108: 3879–3889. 10.1021/jp036721c DOI

Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2: 466–474. 10.1177/1947601911408889 PubMed DOI PMC

Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, et al. (2012) Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 44: 287–301. 10.3109/03602532.2012.725414 PubMed DOI

Pan TJ, Gao L, Wu GJ, Shen GQ, Xie S, et al. (2015) Elevated expression of glutaminase confers glucose utilization via glutaminolysis in prostate cancer. Biochem Biophys Res Commun 456: 452–458. 10.1016/j.bbrc.2014.11.105 PubMed DOI

Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8: 235–253. 10.1038/nrd2792 PubMed DOI PMC

Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of Fibroblast Growth Factor Receptors in Carcinogenesis. Mol Cancer Res 8: 1439–1452. 10.1158/1541-7786.MCR-10-0168 PubMed DOI

Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, et al. (2011) In search of a novel target—Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta-Biomembr 1808: 2638–2645. 10.1016/j.bbamem.2011.07.026 PubMed DOI PMC

Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, et al. (2009) Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition. PLoS One 4: 1–13. PubMed PMC

Borellini F, Glazer RI (1993) Induction of SP1-P53 DNA-binding heterocomplexes during granulocyte-macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1. J Biol Chem 268: 7923–7928. PubMed

Wang LW, Wei DY, Huang SY, Peng ZH, Le XD, et al. (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9: 6371–6380. PubMed

Chuang JY, Wu CH, Lai MD, Chang WC, Hung JJ (2009) Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J Cancer 125: 2066–2076. 10.1002/ijc.24563 PubMed DOI

Jackson P, Grimm MO, Kingsley EA, Brosius U, Antalis T, et al. (2002) Relationship between expression of KAI1 metastasis suppressor gene, mRNA levels and p53 in human bladder and prostate cancer cell lines. Urol Oncol 7: 99–104. 10.1016/s1078-1439(01)00175-2 PubMed DOI

Brooks CL, Gu W (2010) New insights into p53 activation. Cell Res 20: 614–621. 10.1038/cr.2010.53 PubMed DOI PMC

Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK (2008) Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and sp1. Mol Cell Biol 28: 4275–4284. 10.1128/MCB.00369-08 PubMed DOI PMC

Gong PF, Ogra Y, Koizumi S (2000) Inhibitory effects of heavy metals on transcription factor Sp1. Ind Health 38: 224–227. 10.2486/indhealth.38.224 PubMed DOI

Ogra Y, Suzuki K, Gong PF, Otsuka F, Koizumi S (2001) Negative regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. J Biol Chem 276: 16534–16539. 10.1074/jbc.M100570200 PubMed DOI

Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: The multipurpose protein. Cell Mol Life Sci 59: 627–647. 10.1007/s00018-002-8454-2 PubMed DOI PMC

Sigel A, Sigel H, Sigel RKO (2009) Metallothioneins and Related Chelators.

Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 108: 7351–7356. 10.1073/pnas.1015686108 PubMed DOI PMC

Meplan C, Richard MJ, Hainaut P (2000) Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene 19: 5227–5236. 10.1038/sj.onc.1203907 PubMed DOI

Costello LC, Feng P, Milon B, Tan M, Franklin RB (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7: 111–117. 10.1038/sj.pcan.4500712 PubMed DOI PMC

Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, et al. (2003) Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem 96: 435–442. 10.1016/s0162-0134(03)00249-6 PubMed DOI PMC

Cousins RJ, McMahon RJ (2000) Integrative aspects of zinc transporters. J Nutr 130: 1384S–1387S. PubMed

Franz MC, Anderle P, Burzle M, Suzuki Y, Freeman MR, et al. (2013) Zinc transporters in prostate cancer. Mol Asp Med 34: 735–741. 10.1016/j.mam.2012.11.007 PubMed DOI PMC

Rodrigo MAM, Zitka O, Krejcova L, Hynek D, Masarik M, et al. (2014) Electrochemical Microarray for Identification Pathogens: A Review. Int J Electrochem Sci 9: 3431–3439.

Lin P, Sun XC, Feng T, Zou HF, Jiang Y, et al. (2012) ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway. Mol Cell Biochem 359: 235–243. 10.1007/s11010-011-1018-8 PubMed DOI

Lose F, Batra J, O'Mara T, Fahey P, Marquart L, et al. (2013) Common variation in Kallikrein genes KLK5, KLK6, KLK12, and KLK13 and risk of prostate cancer and tumor aggressiveness. Urol Oncol-Semin Orig Investig 31: 635–643. 10.1016/j.urolonc.2011.05.011 PubMed DOI

Hodgson MC, Deryugina EI, Suarez E, Lopez SM, Lin D, et al. (2014) INPP4B suppresses prostate cancer cell invasion. Cell Commun Signal 12: 1–14. 10.1186/s12964-014-0061-y PubMed DOI PMC

Sirma H, Broemel M, Stumm L, Tsourlakis T, Steurer S, et al. (2013) Loss of CDKN1B/p27Kip1 expression is associated with ERG fusion-negative prostate cancer, but is unrelated to patient prognosis. Oncol Lett 6: 1245–1252. 10.3892/ol.2013.1563 PubMed DOI PMC

Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, et al. (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109: 6662–6667. 10.1073/pnas.1121623109 PubMed DOI PMC

Franklin RB, Costello LC (2009) The Important Role of the Apoptotic Effects of Zinc in the Development of Cancers. J Cell Biochem 106: 750–757. 10.1002/jcb.22049 PubMed DOI PMC

Sunderman FW (1995) The influence of zinc on apoptosis. Ann Clin Lab Sci 25: 134–142. PubMed

Eroglu C, Secme M, Bagci G, Dodurga Y (2015) Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumor Biol 36: 9437–9446. 10.1007/s13277-015-3689-3 PubMed DOI

Coffey RNT, Watson RWG, Fitzpatrick JM (2001) Signaling for the caspases: Their role in prostate cell apoptosis. J Urol 165: 5–14. 10.1097/00005392-200101000-00003 PubMed DOI

Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14: 315–330. 10.1007/978-94-017-3728-9_7 PubMed DOI

Safe S, Jin UH, Hedrick E, Reeder A, Lee SO (2014) Minireview: Role Of Orphan Nuclear Receptors in Cancer and Potential as Drug Targets. Mol Endocrinol 28: 157–172. 10.1210/me.2013-1291 PubMed DOI PMC

Shan ZJ, Hou QL, Zhang N, Guo L, Zhang XH, et al. (2014) Overexpression of oxidored-nitro domain containing protein 1 induces growth inhibition and apoptosis in human prostate cancer PC3 cells. Oncol Rep 32: 1939–1946. 10.3892/or.2014.3407 PubMed DOI

Stark JL, Mehla K, Chaika N, Acton TB, Xiao R, et al. (2014) Structure and Function of Human DnaJ Homologue Subfamily A Member 1 (DNAJA1) and Its Relationship to Pancreatic Cancer. Biochemistry 53: 1360–1372. 10.1021/bi401329a PubMed DOI PMC

Zhu JH, Hong DF, Song YM, Sun LF, Wang ZF, et al. (2013) Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells. Asian Pac J Cancer Prev 14: 1017–1021. 10.7314/APJCP.2013.14.2.1017 PubMed DOI

Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, et al. (2013) Ex Vivo Red Blood Cell Hemolysis Assay for the Evaluation of pH-responsive Endosomolytic Agents for Cytosolic Delivery of Biomacromolecular Drugs. J Vis Exp 2013: 1–6. 10.3791/50166 PubMed DOI PMC

Roth KM, Peyvan K, Schwarzkopf KR, Ghindilis A (2006) Electrochemical detection of short DNA oligomer hybridization using the CombiMatrix ElectraSense Microarray reader. Electroanalysis 18: 1982–1988. 10.1002/elan.200603603 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...