The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27727290
PubMed Central
PMC5058503
DOI
10.1371/journal.pone.0163983
PII: PONE-D-16-28891
Knihovny.cz E-zdroje
- MeSH
- antitumorózní látky chemie farmakologie terapeutické užití MeSH
- apoptóza účinky léků MeSH
- exprese genu účinky léků MeSH
- fluorescenční mikroskopie MeSH
- kaspasa 1 metabolismus MeSH
- kationické antimikrobiální peptidy chemie MeSH
- komplexní sloučeniny chemie farmakologie terapeutické užití MeSH
- lidé MeSH
- molekulární konformace MeSH
- nádorové buněčné linie MeSH
- nádory prostaty farmakoterapie MeSH
- proteiny přenášející kationty metabolismus MeSH
- Schiffovy báze chemie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- zinek chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antitumorózní látky MeSH
- kaspasa 1 MeSH
- kationické antimikrobiální peptidy MeSH
- komplexní sloučeniny MeSH
- novicidin MeSH Prohlížeč
- proteiny přenášející kationty MeSH
- Schiffovy báze MeSH
- SLC30A1 protein, human MeSH Prohlížeč
- zinek MeSH
Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug.
Zobrazit více v PubMed
Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global Cancer Statistics. CA-Cancer J Clin 61: 69–90. 10.3322/caac.20107 PubMed DOI
de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, et al. (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376: 1147–1154. 10.1016/S0140-6736(10)61389-X PubMed DOI
Biancardi MF, Santos FCA, Madi-Ravazzi L, Goes RM, Vilamaior PSL, et al. (2010) Testosterone Promotes an Anabolic Increase in the Rat Female Prostate (Skene's Paraurethral Gland) Which Acquires a Male Ventral Prostate Phenotype. Anat Rec 293: 2163–2175. doi: 10.1002/ar.21250. Epub 2010 Sep 9 PubMed DOI
Lodemann U, Einspanier R, Scharfen F, Martens H, Bondzio A (2013) Effects of zinc on epithelial barrier properties and viability in a human and a porcine intestinal cell culture model. Toxicol Vitro 27: 834–843. doi: 10.1016/j.tiv.2012.12.019. Epub 2012 Dec 27 PubMed DOI
Costello LC, Franklin RB (1998) Novel role of zinc in the regulation of prostate citrate metabolism and its implications in prostate cancer. Prostate 35: 285–296. 10.1002/(sici)1097-0045(19980601)35:4<285::aid-pros8>3.0.co;2-f PubMed DOI
Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci 71: 3281–3295. 10.1007/s00018-014-1617-0 PubMed DOI PMC
Krizkova S, Kepinska M, Emri G, Rodrigo MAM, Tmejova K, et al. (2016) Microarray analysis of metallothioneins in human diseases-A review. J Pharm Biomed Anal 117: 464–473. 10.1016/j.jpba.2015.09.031 PubMed DOI
Hasumi M, Suzuki K, Matsui H, Koike H, Ito K, et al. (2003) Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett 200: 187–195. 10.1016/s0304-3835(03)00441-5 PubMed DOI
Franklin RB, Feng P, Milon B, Desouki MM, Singh KK, et al. (2005) hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 4: 1–10. 10.1186/1476-4598-4-32 PubMed DOI PMC
Costello LC, Franklin RB, Zou J, Feng P, Bok R, et al. (2011) Human prostate cancer ZIP1/zinc/citrate genetic/metabolic relationship in the TRAMP prostate cancer animal model. Cancer Biol Ther 12: 1078–1084. 10.4161/cbt.12.12.18367 PubMed DOI PMC
Johnson LN, Cashman SM, Kumar-Singh R (2008) Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther 16: 107–114. 10.1038/sj.mt.6300324 PubMed DOI PMC
Gaspar D, Veiga AS, Castanho MRB (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4: 1–24. 10.3389/fmicb.2013.00294 PubMed DOI PMC
Regberg J, Srimanee A, Langel U (2012) Applications of cell-penetrating peptides for tumor targeting and future cancer therapies. Pharmaceuticals 5: 991–1007. 10.3390/ph5090991 PubMed DOI PMC
Dorosz J, Gofman Y, Kolusheva S, Otzen D, Ben-Tal N, et al. (2010) Membrane Interactions of Novicidin, a Novel Antimicrobial Peptide: Phosphatidylglycerol Promotes Bilayer Insertion. J Phys Chem B 114: 11053–11060. 10.1021/jp1052248 PubMed DOI
Osowole AA, Kolawole GA, Fagade OE (2008) Synthesis, characterization and biological studies on unsymmetrical Schiff-base complexes of nickel(II), copper(II) and zinc(II) and adducts with 2,2 '-dipyridine and 1,10-phenanthroline. J Coord Chem 61: 1046–1055. 10.1080/00958970701482446 DOI
Kostova I, Saso L (2013) Advances in Research of Schiff-Base Metal Complexes as Potent Antioxidants. Curr Med Chem 20: 4609–4632. 10.2174/09298673113209990149 PubMed DOI
Allam A, Maigre L, Alimi M, de Sousa RA, Hessani A, et al. (2014) New Peptides with Metal Binding Abilities and Their Use as Drug Carriers. Bioconjugate Chem 25: 1811–1819. 10.1021/bc500317u PubMed DOI
Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61: 953–964. 10.1016/j.addr.2009.06.001 PubMed DOI
Cermakova S, Herchel R, Travnicek Z, Sebela M (2010) Syntheses and magnetic properties of trinuclear trithiocyanurato-bridged manganese(II) complexes involving bidentate aromatic N-donor heterocycles. Inorg Chem Commun 13: 778–781. 10.1016/j.inoche.2010.03.045 DOI
Kopel P, Wawrzak D, Langer V, Cihalova K, Chudobova D, et al. (2015) Biological Activity and Molecular Structures of Bis(benzimidazole) and Trithiocyanurate Complexes. Molecules 20: 10360–10376. 10.3390/molecules200610360 PubMed DOI PMC
Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta-Bioenerg 1767: 1073–1101. 10.1016/j.bbabio.2007.06.004 PubMed DOI
Kopel P, Sindelar Z, Klicka R (1998) Complexes of iron(III) salen and saloph Schiff bases with bridging dicarboxylic and tricarboxylic acids. Transit Met Chem 23: 139–142.
Maxim C, Pasatoiu TD, Kravtsov VC, Shova S, Muryn CA, et al. (2008) Copper(II) and zinc(II) complexes with Schiff-base ligands derived from salicylaldehyde and 3-methoxysalicylaldehyde: Synthesis, crystal structures, magnetic and luminescence properties. Inorg Chim Acta 361: 3903–3911. 10.1016/j.ica.2008.03.013 DOI
Shit S, Chakraborty J, Samanta B, Rosair GM, Mitra S (2009) Synthesis, Structure and Fluorescence Properties of a Trinuclear Zn(II) Complex with N,N,O-donor Schiff Base Ligands and Bridging Acetates. Z Naturforsch (B) 64: 403–408. 10.1515/znb-2009-0408 DOI
Voicescu M, Heinrich M, Hellwig P (2009) Steady-State and Time Resolved Fluorescence Analysis on Tyrosine-Histidine Model Compounds. J Fluoresc 19: 257–266. 10.1007/s10895-008-0411-5 PubMed DOI
Guzow K, Ganzynkowicz R, Rzeska A, Mrozek J, Szabelski M, et al. (2004) Photophysical properties of tyrosine and its simple derivatives studied by time-resolved fluorescence spectroscopy, global analysis, and theoretical calculations. J Phys Chem B 108: 3879–3889. 10.1021/jp036721c DOI
Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2: 466–474. 10.1177/1947601911408889 PubMed DOI PMC
Krizkova S, Ryvolova M, Hrabeta J, Adam V, Stiborova M, et al. (2012) Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab Rev 44: 287–301. 10.3109/03602532.2012.725414 PubMed DOI
Pan TJ, Gao L, Wu GJ, Shen GQ, Xie S, et al. (2015) Elevated expression of glutaminase confers glucose utilization via glutaminolysis in prostate cancer. Biochem Biophys Res Commun 456: 452–458. 10.1016/j.bbrc.2014.11.105 PubMed DOI
Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8: 235–253. 10.1038/nrd2792 PubMed DOI PMC
Haugsten EM, Wiedlocha A, Olsnes S, Wesche J (2010) Roles of Fibroblast Growth Factor Receptors in Carcinogenesis. Mol Cancer Res 8: 1439–1452. 10.1158/1541-7786.MCR-10-0168 PubMed DOI
Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S, et al. (2011) In search of a novel target—Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta-Biomembr 1808: 2638–2645. 10.1016/j.bbamem.2011.07.026 PubMed DOI PMC
Deniaud E, Baguet J, Chalard R, Blanquier B, Brinza L, et al. (2009) Overexpression of Transcription Factor Sp1 Leads to Gene Expression Perturbations and Cell Cycle Inhibition. PLoS One 4: 1–13. PubMed PMC
Borellini F, Glazer RI (1993) Induction of SP1-P53 DNA-binding heterocomplexes during granulocyte-macrophage colony-stimulating factor-dependent proliferation in human erythroleukemia cell line TF-1. J Biol Chem 268: 7923–7928. PubMed
Wang LW, Wei DY, Huang SY, Peng ZH, Le XD, et al. (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9: 6371–6380. PubMed
Chuang JY, Wu CH, Lai MD, Chang WC, Hung JJ (2009) Overexpression of Sp1 leads to p53-dependent apoptosis in cancer cells. Int J Cancer 125: 2066–2076. 10.1002/ijc.24563 PubMed DOI
Jackson P, Grimm MO, Kingsley EA, Brosius U, Antalis T, et al. (2002) Relationship between expression of KAI1 metastasis suppressor gene, mRNA levels and p53 in human bladder and prostate cancer cell lines. Urol Oncol 7: 99–104. 10.1016/s1078-1439(01)00175-2 PubMed DOI
Brooks CL, Gu W (2010) New insights into p53 activation. Cell Res 20: 614–621. 10.1038/cr.2010.53 PubMed DOI PMC
Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK (2008) Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and sp1. Mol Cell Biol 28: 4275–4284. 10.1128/MCB.00369-08 PubMed DOI PMC
Gong PF, Ogra Y, Koizumi S (2000) Inhibitory effects of heavy metals on transcription factor Sp1. Ind Health 38: 224–227. 10.2486/indhealth.38.224 PubMed DOI
Ogra Y, Suzuki K, Gong PF, Otsuka F, Koizumi S (2001) Negative regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. J Biol Chem 276: 16534–16539. 10.1074/jbc.M100570200 PubMed DOI
Coyle P, Philcox JC, Carey LC, Rofe AM (2002) Metallothionein: The multipurpose protein. Cell Mol Life Sci 59: 627–647. 10.1007/s00018-002-8454-2 PubMed DOI PMC
Sigel A, Sigel H, Sigel RKO (2009) Metallothioneins and Related Chelators.
Qin Y, Dittmer PJ, Park JG, Jansen KB, Palmer AE (2011) Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors. Proc Natl Acad Sci U S A 108: 7351–7356. 10.1073/pnas.1015686108 PubMed DOI PMC
Meplan C, Richard MJ, Hainaut P (2000) Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene 19: 5227–5236. 10.1038/sj.onc.1203907 PubMed DOI
Costello LC, Feng P, Milon B, Tan M, Franklin RB (2004) Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 7: 111–117. 10.1038/sj.pcan.4500712 PubMed DOI PMC
Franklin RB, Ma J, Zou J, Guan Z, Kukoyi BI, et al. (2003) Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem 96: 435–442. 10.1016/s0162-0134(03)00249-6 PubMed DOI PMC
Cousins RJ, McMahon RJ (2000) Integrative aspects of zinc transporters. J Nutr 130: 1384S–1387S. PubMed
Franz MC, Anderle P, Burzle M, Suzuki Y, Freeman MR, et al. (2013) Zinc transporters in prostate cancer. Mol Asp Med 34: 735–741. 10.1016/j.mam.2012.11.007 PubMed DOI PMC
Rodrigo MAM, Zitka O, Krejcova L, Hynek D, Masarik M, et al. (2014) Electrochemical Microarray for Identification Pathogens: A Review. Int J Electrochem Sci 9: 3431–3439.
Lin P, Sun XC, Feng T, Zou HF, Jiang Y, et al. (2012) ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway. Mol Cell Biochem 359: 235–243. 10.1007/s11010-011-1018-8 PubMed DOI
Lose F, Batra J, O'Mara T, Fahey P, Marquart L, et al. (2013) Common variation in Kallikrein genes KLK5, KLK6, KLK12, and KLK13 and risk of prostate cancer and tumor aggressiveness. Urol Oncol-Semin Orig Investig 31: 635–643. 10.1016/j.urolonc.2011.05.011 PubMed DOI
Hodgson MC, Deryugina EI, Suarez E, Lopez SM, Lin D, et al. (2014) INPP4B suppresses prostate cancer cell invasion. Cell Commun Signal 12: 1–14. 10.1186/s12964-014-0061-y PubMed DOI PMC
Sirma H, Broemel M, Stumm L, Tsourlakis T, Steurer S, et al. (2013) Loss of CDKN1B/p27Kip1 expression is associated with ERG fusion-negative prostate cancer, but is unrelated to patient prognosis. Oncol Lett 6: 1245–1252. 10.3892/ol.2013.1563 PubMed DOI PMC
Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, et al. (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A 109: 6662–6667. 10.1073/pnas.1121623109 PubMed DOI PMC
Franklin RB, Costello LC (2009) The Important Role of the Apoptotic Effects of Zinc in the Development of Cancers. J Cell Biochem 106: 750–757. 10.1002/jcb.22049 PubMed DOI PMC
Sunderman FW (1995) The influence of zinc on apoptosis. Ann Clin Lab Sci 25: 134–142. PubMed
Eroglu C, Secme M, Bagci G, Dodurga Y (2015) Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumor Biol 36: 9437–9446. 10.1007/s13277-015-3689-3 PubMed DOI
Coffey RNT, Watson RWG, Fitzpatrick JM (2001) Signaling for the caspases: Their role in prostate cell apoptosis. J Urol 165: 5–14. 10.1097/00005392-200101000-00003 PubMed DOI
Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14: 315–330. 10.1007/978-94-017-3728-9_7 PubMed DOI
Safe S, Jin UH, Hedrick E, Reeder A, Lee SO (2014) Minireview: Role Of Orphan Nuclear Receptors in Cancer and Potential as Drug Targets. Mol Endocrinol 28: 157–172. 10.1210/me.2013-1291 PubMed DOI PMC
Shan ZJ, Hou QL, Zhang N, Guo L, Zhang XH, et al. (2014) Overexpression of oxidored-nitro domain containing protein 1 induces growth inhibition and apoptosis in human prostate cancer PC3 cells. Oncol Rep 32: 1939–1946. 10.3892/or.2014.3407 PubMed DOI
Stark JL, Mehla K, Chaika N, Acton TB, Xiao R, et al. (2014) Structure and Function of Human DnaJ Homologue Subfamily A Member 1 (DNAJA1) and Its Relationship to Pancreatic Cancer. Biochemistry 53: 1360–1372. 10.1021/bi401329a PubMed DOI PMC
Zhu JH, Hong DF, Song YM, Sun LF, Wang ZF, et al. (2013) Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells. Asian Pac J Cancer Prev 14: 1017–1021. 10.7314/APJCP.2013.14.2.1017 PubMed DOI
Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, et al. (2013) Ex Vivo Red Blood Cell Hemolysis Assay for the Evaluation of pH-responsive Endosomolytic Agents for Cytosolic Delivery of Biomacromolecular Drugs. J Vis Exp 2013: 1–6. 10.3791/50166 PubMed DOI PMC
Roth KM, Peyvan K, Schwarzkopf KR, Ghindilis A (2006) Electrochemical detection of short DNA oligomer hybridization using the CombiMatrix ElectraSense Microarray reader. Electroanalysis 18: 1982–1988. 10.1002/elan.200603603 DOI